Net Fikir » matematikçiler
Guido Grandi ıraksak serisi
Mehmet Fatin Gökmen ve Astronomi
Hilmi Hacısalihoğlu
Cebir ilminin gelişimi
Pergeli Apollonius
Antik Yunan matematikçisi ve astronomu Pergeli Apollonius’un (MÖ ~240 – MÖ ~190), Perge’de doğmuş, İskenderiye’de yaşamış, konik kesitler (elips, parabol, hiperbol) üzerine çalışmalar yapmış önemli bir matematikçi ve astronomdur. Öklid ve Arşimet’in çalışmalarını daha ileriye taşımış, analitik geometrinin öncülerinden sayılır. Doğum ve ölüm tarihleri kesin olmamakla birlikte, MÖ 3. yüzyılın ikinci yarısı ile MÖ 2. yüzyılın başları arasında yaşadığı kabul edilir. Perge doğumlu olmakla birlikte İskenderiye’de eğitim görmüş, Bergama’da ve Efes’te de bulunmuştur. Zamanının entelektüel çevresine dahil olmuş, önemli matematikçilerle iletişimde bulunmuştur. Konik kesitlerle ilgili kavram ve terimleri bugünkü anlamlarıyla tanımlamış, koniklerin temel özelliklerini ortaya koymuştur. Bu çalışmalar daha sonra Kopernik, Kepler ve Newton gibi bilim insanlarının gezegenlerin yörüngelerini anlamasında temel oluşturmuştur. Çalışmalarının çoğu günümüze ulaşmamış; mevcut eserleri ve onlarla ilgili yorumlar aracılığıyla tanınmış olup, Orta Çağ’da Arapçaya çevrilerek Rönesans ve sonrasında yeniden keşfedilmiştir.
Pergeli Apollonius, Öklid geometrisini benimseyerek onu daha ileri düzeylere götürmüştür. Teorik ve sentetik geometrici olarak, 19. yüzyıldaki Steiner'e kadar Apollonius'un bir eşine daha rastlanamaz. Konikler adı altında bugün bildiğimiz elips, çember, hiperbol ve parabol kesişimlerine ait problemlerin birçoğu Apollonius tarafından bulunmuştur. "Konika" eseri sekiz kitaptan oluşmuştur. Eserde konik kesitlerinin (bir koninin düzlemle kesişmesinden ortaya çıkan elips, parabol, hiperbol gibi eğriler) detaylı incelemeleri mevcuttur. Eserin ilk dört kitabı orijinal Yunanca, 5-7. kitaplar ise Arapçadan çevrilmiş; 8. kitabın durumu ise belirsizdir. Sekiz kitabından yalnızca ilk dördü, Apollonius'un orijinal metinlerinden geldiği konusunda güvenilir bir iddiaya sahiptir. 5-7. kitaplar Arapçadan Latinceye çevrilmiş olduğundan yoruma açıktır. Eserin orijinal Yunanca halinin ise kaybolduğu varsayılmaktadır. Pergeli Apollonius bu eserinin, Edmond Halley tarafından Latince olarak "yeniden yapılanmış" bir versiyonu vardır ama ne kadarının Apollonius'a benzediğini bilmenin bir yolu yoktur. Eserler sonraki yıllarda (19. ve 20. yüzyılda) İngiliz bilim insanları Heath, Taliaferro ve Thomas tarafından İngilizce’ye çevrilmiş ve incelenmiştir. Apollonius’un eserleri bugün klasik matematik literatüründe önemli yer tutar.
Apollonios, antik dönemin en büyük matematikçilerinden biri olarak, özellikle konik eğriler üzerine yaptığı çalışmalarla “Büyük Geometri Ustası” unvanını kazanmıştır. Bu unvan, yalnızca onun eserlerinin kalitesi ve derinliğiyle değil, aynı zamanda onun ve Öklid gibi diğer büyük matematikçilerin çalışmalarını bir araya getirip koruyan Pappos’un katkıları sayesinde günümüze kadar ulaşabilmiştir. Pappos, Apollonios’un fikirlerini ve yöntemlerini sistematik bir biçimde derleyerek, antik matematiğin bu önemli hazinesinin sonraki nesillere aktarılmasını sağlamıştır.
Apollonios’un en çarpıcı başarılarından biri, konik eğriler (elips, parabol ve hiperbol) kavramını hem tanımlaması hem de bu eğrilerin özelliklerini matematiksel olarak incelemesidir. Bu kavramsal gelişme, yalnızca geometri alanında değil, matematiğin genelinde bir devrim niteliği taşır. Çünkü Apollonios, konik eğrileri soyut birer kavram olarak ortaya koymakla kalmamış, aynı zamanda bu eğrilerin doğasını detaylı bir şekilde analiz etmiş ve bunların temel özelliklerini sistematik biçimde ortaya koymuştur. Dahası, Apollonios’un dönemiyle kıyaslandığında, onun ortaya koyduğu bu soyut kavramları somutlaştıracak teknik araçların geliştirilmesi oldukça gecikmiştir. Öyle ki, konik eğrileri geometrik olarak çizmek için gerekli olan ve kavramların pratik olarak uygulanmasını mümkün kılan gelişmiş aletler ancak yaklaşık bin yıl sonra ortaya çıkabilmiştir. Bu durum, Apollonios’un teorik soyutlama gücünün ve matematiksel öngörüsünün kendi zamanının teknolojik ve teknik imkanlarının çok ötesinde olduğunu gösterir. Yani, o dönemdeki mevcut alet ve yöntemlerle bu eğrilerin tam anlamıyla çizilmesi veya uygulanması mümkün değildi; fakat Apollonios, böyle bir soyut yapıyı kavrayacak ve inceleyecek entelektüel birikime sahiptir. Bu bakımdan Apollonios’un çalışmaları, sadece kendi çağının değil, aynı zamanda matematik tarihinin önemli dönüm noktalarından biri olarak kabul edilir. Onun ortaya koyduğu kavramsal çerçeve, ilerleyen yüzyıllarda matematiksel düşüncenin gelişmesine öncülük etmiş ve daha sonraki matematikçiler için güçlü bir temel oluşturmuştur. Ayrıca, Apollonios’un eserleri, geometrinin gelişimiyle birlikte fizik, astronomi ve mühendislik gibi birçok alanda da uzun vadeli etkilere sebep olmuştur.
Abdülmelik eş-Şîrâzî
W. George Horner ve Horner Yöntemi
Horner metodu, İngiliz matematikçi William George Horner (9 Haziran 1786-22 Eylül 1837) tarafından akademik dünyaya kazandırılmıştır. George Horner, bilimsel yazı hayatına 1810’lu yıllarda başlamıştır. "The Ladies’ Diary" ve "The Gentleman’s Diary" gibi dönemin önemli dergilerinde çeşitli matematik problemleri yayımlamıştır. 1819 yılında, "Royal Society (Kraliyet Cemiyeti)’nin Philosophical Transactions" dergisinde yayımlanan makalesiyle Horner Yöntemini bilim dünyasına tanıtmıştır. George Horner adıyla bilim dünyasına tanıtılmış olan "Polinom Bölmesi Yöntemi", Horner’den çok önceleri, 13. yüzyılda Çinliler tarafından Zhu Shijie (ö. 1300?) adıyla bilinmekteydi. William Horner, 1819 yılında yayımladığı makalesiyle bu yöntemi Avrupa’ya tanıtmış ve polinomlarda bölme işleminin daha hızlı ve düzenli bir biçimde hesaplanmasını sağlayan bu yaklaşımı açıklamıştır. Tarihsel olarak, bu yönteme benzer fikirler Horner’dan önce Joseph-Louis Lagrange ve René Descartes gibi matematikçiler tarafından da Avrupa’da kısmen kullanılmıştır. Buna rağmen yöntemi sistematik bir hale getirip yaygınlaştıran kişi William George Horner olduğu için bu teknik onun adıyla anılmaktadır.
John Farey Dizisi
Bir Farey dizisi, genellikle Fn olarak gösterilir ve paydası en fazla n olan tüm kesirleri içerir. Bu kesirler, sıralı bir şekilde düzenlenir ve her ardışık kesir, birbirine en yakın iki kesir arasındaki farkı minimize edecek şekilde seçilir. Bu dizi, her zaman 0 ve 1 ile başlar ve biter, çünkü bu iki sayıya eşit olan kesirler dizinin ilk ve son elemanlarıdır. Farey dizisi, rasyonel sayıları belirli bir düzene göre sıralamak için kullanılır.
Farey dizisinin önemli özelliklerinden biri, her iki ardışık kesir arasındaki farkın belirli bir ölçüye sahip olmasıdır. Bu fark, her iki kesirin paydalarının büyüklüğüne bağlı olarak değişir, ancak genellikle Farey dizisinin özelliklerine göre çok küçük olur. Bu da, rasyonel sayılar arasındaki "yoğunluğu" göstermektedir. Yani, Farey dizisindeki kesirler ne kadar büyük bir diziyi kapsasa da, ardışık iki kesir arasındaki fark hala çok küçüktür. Dizinin elemanları a/b ve c/d ise bu iki dizi terimi arasında a.d-b.c=1 eşitliği vardır. Aşağıdaki terimler arasındaki kurala dikkat edebilirsiniz.Örneğin F5 Farey dizisi, paydası en fazla 5 olan 0 ile 1 arasındaki kesirlerin sıralandığı bir dizidir. Bu dizide yer alan tüm kesirler, paydaları 5'e kadar olan rasyonel sayılardır. Dizinin doğru sıralaması şu şekildedir:
F5 = {0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}
Farey dizisi F7, paydası en fazla 7 olan ve 0 ile 1 arasındaki rasyonel kesirlerin sıralandığı bir dizidir. Bu dizideki tüm kesirlerin paydası 7'yi geçmez ve her iki ardışık kesir arasındaki fark, Farey dizisinin özelliklerine uygun şekilde minimize edilmiştir. Bu kesirler, büyüklük sırasına göre dizilmiştir ve matematiksel olarak birbirine yakın olacak şekilde yerleştirilmiştir.
F7 = { 0/1, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 1/1 }
Farey dizisi F8 için terimi almak, 8. paydadan oluşan Farey dizisinin elemanlarını bulmayı içerir. Bu durumda, F8 dizisinin elemanları, 8'e kadar olan paydalara sahip olan ve birbirine en yakın olan kesirlerden oluşur. Burada kesirler sırasıyla artan bir şekilde yerleştirilmiştir.
F8 = {0/1, 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8, 1/1}
Brahmagupta ve Sıfır Sayısı
Bahaüddin Abdissamed el-Amili
Dönemin Safevî hükümdarı I. Şah Abbas tarafından büyük saygı görmüş, şeyhülislâm unvanı ile onurlandırılmıştır. Buna rağmen zâhidâne ve mütevazı bir hayat sürmüş, daha sonraki yıllarında İsfahan’a yerleşmiş, burada hem eser telif etmeye devam etmiş hem de ders vermiştir. 13 Şevval 1031’de (21 Ağustos 1622- Bazı kaynaklarda vefatı 1030 (1621) veya 1035 (1626) olarak da geçmektedir) vefat etmiş, cenazesi Meşhed’e nakledilerek İmam Rıza Türbesi yakınında defnedilmiştir. Bahâüddîn Âmilî, ilim, sanat ve maneviyatı birleştiren şahsiyetiyle tanınmış, servet ve makamdan uzak durmuş, insanları bilgi ve ahlâklarıyla değerlendirmiştir. Bu yönüyle halk arasında efsanevi bir ün kazanmıştır. Bazı kaynaklar onun Sünnî olabileceğini ileri sürmüşse de, genel kabul onun samimi bir Şiî âlim olduğudur. Tasavvufa ilgi duymuş, ancak şeriata aykırı görüşleri reddeden ölçülü bir tasavvuf anlayışını benimsemiştir. İran İslam Devrimi lideri İmam Humeyni, eserlerinde Şeyh-i Bahâî’den sıkça alıntılar yapmıştır.
Hüseyin Tevfik Paşa, Lineer Cebir (Algebra)
Karl Theodor Weierstrass
Weierstrass Limit Tanımı: Herhangi bir ε (epsilon) pozitif Reel sayısı için, buna karşılık gelen bir δ (delta) pozitif Reel sayı mutlaka vardır; öyle ki, eğer 0 < |x - a| < δ ise, o zaman |f(x) - L| < ε olur. Yani, x değeri a noktasına δ kadar yaklaştığında, f(x) değeri de L noktasına ε kadar yaklaşır. Bu, Weierstrass’ın limit kavramını kesin ve ölçülebilir biçimde tanımladığı ifadedir.
Leonardo Pisano Fibonacci
Leonardo Pisano Fibonacci yaklaşık 1170 yılında İtalya’nın Pisa kentinde doğmuş bir matematikçidir. Avrupa’da Pisalı Leonardo ya da Leonardo Bonacci olarak da tanınır. Babası Guglielmo Bonacci adlı bir tüccardır. Küçük yaşlarda annesini kaybetmiş babası ile beraber ticari seyehatlere çıkmıştır. Fibonacci, küçük yaşta Kuzey Afrika’da bulunmuş ve burada Hint-Arap sayı sistemiyle tanışmıştır. Yaşamı boyunca Akdeniz çevresindeki birçok ticari merkeze gitmiş, farklı hesap yöntemleri öğrenmiştir. Ölüm tarihi kesin olmamakla birlikte yaklaşık 1240-1250 yılları arasında Pisa’da öldüğü tahmin edilir.
Fibonacci’nin en ünlü eseri 1202 yılında yayımlanan Liber Abaci adlı kitaptır. Bu kitap, Avrupa’da Hint-Arap rakam sisteminin (0 ile 9 arası rakamların oluşturduğu sembolik sayı sistemi) yayılmasına büyük katkı sağlamıştır. Kitapta Roma rakamlarının yerine geçebilecek yeni sistem, ticaret, muhasebe ve para birimi dönüşümleri gibi konularda kullanılmıştır. Ayrıca bu kitapta yer alan teorik bir tavşan problemi ile bilinen "Fibonacci dizisi" tanıtılmıştır. Bu dizi genellikle 0 veya 1 ile başlar ve sonrasındaki her sayı, kendinden önce gelen iki sayının toplamı şeklinde devam eder. ve şu şekilde devam eder: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... Bu dizinin ardışık terimlerinin oranı giderek altın oran olarak bilinen yaklaşık bir sabite φ=1,61803.. değerine yaklaşır.
Liber Abaci, Leonardo'nun "dokuz Hint rakamı"nı tanıttığı bölümle başlar: 9, 8, 7, 6, 5, 4, 3, 2, 1. Bu rakamlar, günümüzde kullandığımız rakamlarla büyük benzerlik gösterir. Leonardo, bu rakamları kullanarak daha büyük sayıları temsil etmenin yollarını gösterir. Eserde ayrıca Roma rakamlarını Hint-Arap rakamlarına dönüştüren bir diyagram da bulunmaktadır. Makale, Leonardo'nun eserin başında yer alan otobiyografik bir metni de sunmaktadır. Bu metinde, babasının kamu görevlisi olarak görev yaptığı Bugia'da (günümüz Cezayir'inde) geçirdiği yıllarda Hint-Arap sayı sistemini öğrendiğini ve bu bilgiyi İtalya'ya taşıyarak halkına öğretmek için Liber Abaci'yi yazdığını belirtmektedir.
Fibonacci, ayrıca arazi ölçümleri, alan ve hacim hesapları, karelerle ilgili denklemler gibi konularda da çalışmalar yapmıştır. Sayılarla işlem yapılmasını kolaylaştıran Hint-Arap sisteminin Avrupa’ya tanıtılması sayesinde ticaret, muhasebe ve bilimsel hesaplamalar gelişmiştir. Fibonacci dizisi ve altın oran günümüzde matematik, doğa bilimleri, mimari ve sanat gibi pek çok alanda önemli yer tutmaktadır.
Meryem Mirzakhani
Srinivasa Ramanujan
Oktay Sinanoğlu
Büyük Matematikçi Ömer Hayyam
Matematik Fields Madalyası (Meryem Mirzakhani)
Fields Madalyası Komitesi, IMC yönetim kurulu tarafından belirleniyor. Ödül komitesinin başkanı dışındaki bileşimi ödül töreninin yapılacağı tarihe kadar gizli tutuluyor.
Aslında Fields için "matematiğin Nobel'i" tariflemesini birçok matematikçi beğenmiyor. Nobel ödül başlıkları arasında matematiğin neden yer almadığıysa başlı başına bir tartışma. Söylentiye göre gerçek sebep, Nobel ödüllerini başlatan Alfred Nobel'le İsviçreli matematikçi Mittag-Leffler arasındaki kişisel husumetmiş.
http://www2.maths.ox.ac.uk/cmi/library/annual_report/ar2008/08Interview.
http://www.mathunion.org/general/prizes/2014/prize-citations/
http://www.mathunion.org/fileadmin/IMU/Prizes/2014/news_release_mirzakhani.pdf
Not: (16/07/2017) Matematiğin Nobeli olarak anılan Fields ödülünü kazanan ilk kadın olarak tarihe geçen İranlı matematikçi Meryem Mirzakhani, 40 yaşında meme kanseri nedeniyle hayatını kaybetti. Kanserin Mirzakhani'nin kemiklerine kadar yayıldığı belirtildi. ABD'de yaşayan ve çalışan Mirzakhani, çalışmalarında özellikle hiperbolikgeometri, ergodik teori, simplektik geometri ve Teichmüller teorisine odaklanıyordu. http://www.bbc.com/turkce/amp/haberler-dunya-40619607












