Piramitin Alanı ve Hacmi

Etiketler :
Tabanı herhangi bir çokgen olan ve bu çokgenin tüm noktaları çokgen düzleminin dışındaki bir noktaya birleştirildiğinde oluşan şekil piramittir. Piramitler tabanlarına göre adlandırılırlar. Üçgen piramit, kare piramit, altıgen piramit.
Tabanı düzgün çokgen olan ve yüksekliği tabanın ağırlık merkezinden geçen piramitlere de düzgün piramit adı verilir. Taban şekli kare olan piramitlere düzgün kare piramit denir. Kare piramidin tabanı kare biçimindedir. Yan yüzeyleri ise dört adet ikizkenar üçgenden oluşur.İkizkenar üçgenlerin taban uzunlukları piramidin tabanının bir kenarına eşittir.Tabanı eşkenar üçgen olan piramitlere eşkenar üçgen piramit denir.

Bir dik piramitte eğer tabandaki şekil bir düzgün çokgen (bütün kenar ve açılar eş) ise; dönme simetri açısı 360/(kenar sayısı) formülü ile bulunur. Dik piramidin hacmi, eş tabana ve eş yüksekliğe sahip prizmanın hacminin üçte birine eşittir. Bir piramiti tabana paralel bir düzlemle kestiğimizde, taban ile düzlem arasında kalan kısmına kesik piramit denir.
Kesik piramidin genel hacmi taban alanları ve yüksekliği bilindiğinde aşağıdaki ispatı yapılan formül kullanılarak bulunabilir. Bu formül kullanmadan da kesik piramid; tam piramid gibi düşünülerek, büyük piramid hacminden üstte kalan küçük piramid hacmi çıkarılarak da kesik piramidin hacmi bulunur.
Bir kesik piramitte kesit alanının yüzey alanını bulmak için iki üçgenin benzerliğinden yararlanarak gerekli uzunluklar bulunu ve bundan sonra alanı hesaplanır.
Piramidin hacmi tabanının alanı ile yükseklik uzunluğunun çarpımının üçte biridir. Bir dik piramidin hacmi eş tabanlı ve eş yüksekliği olan bir prizmanın hacminin 1/3 üne eşittir.Tabanı düzgün altıgen olan piramide düzgün altıgen piramit denir. Altıgen piramitte yan yüzeyleri altı adet eş ikizkenar üçgenden oluşur.
Piramidin hacmi tabanda yer alan şekle göre değişiklik gösterir. Bu nedenle tabanda yer alan şekil ne ise öncelikle onun alanı bulunur daha sonra yükseklik bulunarak prizma hacmi hesaplanıyor gibi taban alanı ile yükseklik çarpılır ve 1/3 ü alınarak piramitin hacmi bulunur.
Kesik piramidin genel hacmi taban alanları ve yüksekliği bilindiğinde yukarıda ispatı yapılan formül kullanılarak bulunabilir. Bu formül kullanmadan da kesik piramid; tam piramid gibi düşünülerek, büyük piramid hacminden üstte kalan küçük piramid hacmi çıkarılarak da kesik piramidin hacmi bulunur.
Dört yüzü de eşkenar üçgen olan piramite düzgün dörtyüzlü denir. Bu piramitin yüzey alanı eşkenar üçgenin alanın dört ile çarpılmasıyla bulunur.Düzgün dörtyüzlüde Yükseklik, tabanı oluşturan üçgenin ağırlık merkezine iner.Bütün ayrıtları birbirine eş ve yüzeyleri sekiz eşkenar üçgenden oluşan cisme düzgün sekizyüzlü denir. Cismin, ortak tabanlı iki adet kare piramitten oluştuğunu düşünürsek piramitlerin yüksekliği; bir piramitin yüksekliğinin iki katı kadar olur.

2 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Yüksekova’da Matematik Öğretmeni olmak30.06.2008 - 0 Yorum Yüksekova; doğunun en uç sınırı. Öyle bir sınır ki bir ucu İran'a dayanıyor. İlk defa gittiğim bu şehirde çok farklı anılara sahip oldum. Yüksekova askerliğim nedeniyle; Alanya'dan başlayarak Malatya, Elazığ, Muş, Bitlis ve Van hattı üzerinden…
  • Kenarortay Teoremi İspatı22.05.2013 - 3 Yorum Bir üçgenin herhangi bir köşesinden çizilen ve o köşeye ait  kenarını uzunluk cinsinden iki eşit parçaya ayıran doğru parçasına kenarortay denir. Kenarortayların kesiştiği noktaya o üçgenin ağırlık merkezi denir ve G harfi ile…
  • Gündelik Hayatta Elips Biçimleri18.08.2015 - 0 Yorum Elips; geometrik şekli gündelik hayatta sıklıkla karşılaştığımız matematiksel formlardan birisidir. Aşağıda resimlerini gördüğümüz pek çok eşya karşımıza çıkan farklı elips formlarına birer örnek teşkil edecek durumda bizlerin istifadesine…
  • YGS 2016 Matematik Sınavı Çözümleri13.05.2016 - 0 Yorum YGS 2016 sınavı geçmiş yıllara nazaran daha kolay denilebilecek düzeyde olmakla birlikte okuduğunu anlama ve yorumlama yeteneğinin ölçüldüğü bi sınav olarak gözümüze çarpmaktadır.  Sınavda her yıl olduğu gibi aşağıda yer alan temel matematik…
  • Çemberde Teğet Uygulamaları21.05.2014 - 0 Yorum Bir çemberde dışındaki bir noktadan çizilen ve çemberle sadece tek bir ortak noktası olan doğruya teğet doğrusu adı verilir. Merkezden bu doğruya yarıçap çizildiğinde 90 derecelik dik açı meydana gelir.
  • Dilsiz şahit hayvanların vebali01.02.2020 - 3 YorumÇeşitli mecralarda sıklıkla bahsedilen hayvan hakları konusu üzerinde çeşitli okumalar sonucu elde ettiğim verileri, özellikle son yıllarda Amerika ve Avrupa kıtalarında yayılmaya başlayan vegan yaşam tarzı ve et tüketimine alternatif arama…
  • Çemberde Teğet ve Kiriş Özellikleri18.04.2013 - 6 YorumYazı, çemberde teğet ve kiriş kavramlarının bütününü içeren uzun bir yazıdır. Çemberde teğet ve kiriş özellikleri ile ilgili, çeşitli kaynaklarda yer alan tüm içerikler, konu bütünlüğü bozulmadan listelenmiştir. Kirişler dörtgeni ve teğetler…
  • Bir Kral ve Köylü Hikayesi17.04.2014 - 0 Yorum Eski zamanlarda bir kral, saraya gelen yolun üzerine kocaman bir kaya koydurmuş, kendisi de pencereye oturmuştu. Bakalım neler olacaktı?.. Ülkenin en zenginleri, en güçlü kervanları, saray görevlileri birer birer geldiler... Sabahtan öğlene…