Bileşke Fonksiyonun Türevi ve İspatı

Etiketler :
Bileşke fonksiyonların türevi bulunurken eğer fonksiyonun bileşkesi bulunabiliyorsa öncelikle fonksiyonun bileşkesi alınır daha sonra istenen türev bulunur. Bileşke fonksiyonun bulanmayacağı veya daha zor olarak hesaplanacağı durumlarda ise öncelikle birinci fonksiyonun türevinde ikinci fonksiyon bilinmeyen yerine yazılır daha sonra ikinci fonksiyonun da ayrı olarak tekrar türevi alınarak çarpım halinde yanına yazılarak bileşke fonksiyonun türevi bulunur.


Aşağıda yer alan sorular bileşke fonksiyonun türevinin nasıl alınabileceğini gösteren farklı tipteki sorulardır. Buralarda birden fazla fonksiyonun bileşkesi şeklinde yeni fonksiyonlar verildiğinde bunların türevi yine aynı bileşke fonksiyonun türevi kuralı yardımıyla bulunur.


0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Kenarortay ve Özellikleri06.04.2020 - 0 YorumKenarortay, bir üçgende herhangi bir kenarın orta noktasını, o kenara ait karşı köşeye birleştiren doğru parçasıdır.Kenarortayların kesiştiği noktaya o üçgenin ağırlık merkezi denir ve G harfi ile adlandırılır. Bir üçgende ağırlık merkezi…
  • Mutlu Sayılar Nedir?03.12.2010 - 0 Yorum "Sayının mutlusu, mutsuzu olur mu?" demeyin hemen. oluyor. madem mutlu sayı oluyor, neye göre oluyor? matematiksel açıdan bir açıklaması var tabi bunun. Aslında ciddi bir matematik ifadesi olarak bakılmayabilir duruma ama mutlu sayı ifadesi; özel…
  • SİGARA VE ZARARLARI04.03.2013 - 0 Yorum Sigara dumanında birçok zehirli kimyevî maddeler vardır. Bu sebeple sigara dumanına maruz kalanlar da içenler gibi zehirlenir. Sigara birçok hastalıkla birlikte kanser de yapmaktadır. Sigara, içen veya dumanına maruz kalan kadınlarda erken doğum,…
  • Bölüm Türevi ve İspatı26.11.2016 - 1 Yorum Bazı durumlarda bölüm fonksiyonunu bulmak verilen fonksiyonlar açısından kolay olmayabileceği gibi bölme işlemi ile uğraşmak zaman bakımından da sıkıntılı olacaktır. İki fonksiyonun birbirine bölümünün türevi alınırken çarpım türevine benzer…
  • Thales Teoremleri ve İspatı22.05.2013 - 0 YorumMiletli Thalēs; y. MÖ 624/623 – MÖ 548/545), Milet, İyonya'dan bir Antik şehir bugün Aydın sınırları içersinde kalmaktadır. Thales, matematikçi, astronom ve aynı zamanda felsefe ile uşraşmıştır. İlk filozoflardan olduğu için felsefenin öncüsü olarak…
  • G.Friedrich Bernhard Riemann03.02.2010 - 0 Yorum(17 Eylül 1826 - 20 Temmuz 1866), analiz ve diferansiyel geometri dalında çok önemli katkıları olan Alman matematikçidir. Söz konusu katkılar daha sonra izafiyet teorisinin geliştirilmesinde önemli rol oynamıştır. Bu matematikçinin ismi aynı zamanda…
  • Bölünebilme Kuralları30.10.2010 - 3 YorumBölünme Kuralları, matematikte sayıların 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12,13,17,19,25,36 sayılarına kalansız olarak bölünüp bölünemediklerini bölme işlemi yapmadan anlamaya yardımcı olan kurallarıdır. En sık kullanılan 2, 3, 4, 5, 6, 8, 9, 10,…
  • Fraktal ile örüntü arasındaki farklar06.09.2011 - 0 YorumFraktal; matematikte, çoğunlukla kendine benzeme özelliği gösteren karmaşık geometrik şekillerin ortak adıdır. Fraktallar, klasik, yani Eukleidesçi geometrideki kare , daire , küre gibi basit şekillerden çok farklıdır. Bunlar, doğadaki, Eukleidesçi…