Bir fonksiyonun bir noktada sürekliliği

Etiketler :
Süreklilik matematik ve bir çok bilim dalında uygulamaları olan önemli bir kavramdır.  Bir fonksiyonun herhangi bir noktada sürekli olması için öncelikle o noktada tanımlı bir fonksiyon olması gerekir. Tanımsız olan bir noktada süreklilik aranmaz. Tanımlı olarak verilen bir noktada fonksiyonun sürekliliği araştırılırken fonksiyonun verilen x=a noktasında limitinin olması gereklidir. Yani fonksionun o noktadaki sağdan ve soldan limit değerleri birbirine eşit olmalıdır. Fonksiyonun verilen x=a noktasındaki limit değeri fonksiyonun o noktadaki görüntüsüne yani f(a) değerine de eşit olmalıdır. Bu şartlar sağlandığında "fonksiyon x=a noktasında süreklidir" denir (continous function). Sürekli olmayan fonksiyon o noktada süreksiz olur. 

Süreklilik kavramı bir fonksiyonun tanım kümesine ait bir x0 noktası için f (x0) noktası ve x noktasının sağ ve sol tarafındaki değerler (noktanın sağ ve sol komşulukları) hakkında bilgi verir.  Bir x0∈R noktası için A kümesinin bir  ε>0 reel sayısı olmak üzere x0 noktasının herhangi bir ε komşuluğunda (x0ε , x0+ ε) ⊆ A özelliğine sahip bir alt kümesinde tanımlı bir f : A → R fonksiyonu için, x bağımsız değişkeni x0 reel sayısına yaklaşırsa f(x) değerleri de f(x0) değerine yaklaşmış olur. Bu şekildeki fonksiyonların sağdan ve soldan yaklaşma değerleri birbirine eşit ise fonksiyonun bu noktada limiti vardır. Bu limit değeri, fonksiyonun x0 noktasındaki f(x0) değerine eşit ise bu fonksiyon bu noktada sürekli olur. 

Süreklilik tanımının haricinde bazı f:A→R parçalı fonksiyonları için x bağımsız değişkeni x0 reel sayısına sağdan veya soldan yaklaştığında f(x) değerleri f(x0) değerine yaklaşmaz. Bu şekildeki fonksiyonlar x0 noktasında sürekli olmaz yani fonksiyon x0 noktasında süreksizdir. Bir fonksiyon bütün Reel sayılar kümesinde süreklilik tanımını sağlıyorsa fonksiyona sürekli fonksiyon denir. Polinom fonksiyonlar her noktada sürekli fonksiyonlara örnek olarak verilebilir.
Fonksiyonun sürekliliğini epsilon-delta tanımına göre gösterebilmek için verilen koşulun her durumda sağlandığı δ (delta) bir değerini ε (epsilon) cinsinden ifade edebilmemiz gerekir. Aşağıda buna bir örnek verilmiştir. Buradaki tanımın genel limit tanımından farkı; fonksiyonun o noktadaki (x=a noktasındaki) f(a değerinin limit tanımına yerleştirilmesidir.

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • G.Friedrich Bernhard Riemann03.02.2010 - 0 Yorum(17 Eylül 1826 - 20 Temmuz 1866), analiz ve diferansiyel geometri dalında çok önemli katkıları olan Alman matematikçidir. Söz konusu katkılar daha sonra izafiyet teorisinin geliştirilmesinde önemli rol oynamıştır. Bu matematikçinin ismi aynı zamanda…
  • Tahrif edilen Tevrat ve İncil07.01.2009 - 0 Yorum İnsanın Yaratıcı'sını, yani Allah'ı tanıması, ancak O'nun bu konuda insana bir bilgi ulaştırmasıyla mümkün olabilir. Bu bilgiye ulaşmak için—ki insan için olabilecek en önemli bilgi budur—etrafına bakan insan, dört ilahi kitapla karşılaşır. ve bu…
  • Birazdan Gün Doğacak13.05.2010 - 0 Yorum Nuri Pakdil'e Beton duvarlar arasında bir çiçek açtı Siz kahramanısınız çelik dişliler arasında direnen insanlığın Saçlarınız ızdırap denizinde bir tutam başak Elleriniz kök salmış ağacıdır zamana O inanmışlar çağının. Zaman akar yer direnir…
  • İlahiyat Lisans Tamamlama Uzaktan Eğitim01.09.2012 - 4 Yorumİlahiyat Lisans Tamamlama Uzaktan Eğitim Programı (İLİTAM), Ankara Üniversitesi tarafından geliştirilmiş özgün bir lisans tamamlama programıdır. Aşağıda yazılı bilgiler, 2013-2014 Eğitim-Öğretim Yılı için geçerli bilgilerdir. Konu ile ilgili…
  • Deizm kıskacındaki gençlik13.05.2023 - 1 YorumSon zamanların özellikle gençlerdeki moda konusu olan deizm hakkında çeşitli felsefi yorumları aktardıktan sonra deizme karşı İslam dininin bakış açısını göstererek konuyu irdeleyelim. Deizm'in tanımı nedir? Herkesin üzerinde ittifak ettiği…
  • SİGARA VE ZARARLARI04.03.2013 - 0 Yorum Sigara dumanında birçok zehirli kimyevî maddeler vardır. Bu sebeple sigara dumanına maruz kalanlar da içenler gibi zehirlenir. Sigara birçok hastalıkla birlikte kanser de yapmaktadır. Sigara, içen veya dumanına maruz kalan kadınlarda erken doğum,…
  • Katı Cisimlerin Alan ve Hacim Formülleri18.01.2017 - 5 Yorum Birbirine paralel olacak şekilde seçilen iki çokgenin karşılıklı olarak köşe noktalarını birleştiren doğruların arasında kalan kapalı geometrik şekle katı cisim denir. Bu katı cisimler tabanında bulunan geometrik şekle göre isimlendirilir. Bütün…
  • Limitte ∞-∞ belirsizliği27.08.2016 - 3 Yorum ∞-∞ belirsizliği limit çözümleri yapılırken ∞/∞ belirsizliği (Bkz.Limitte ∞/∞ belirsizliği)  veya 0/0 belirsizliklerine (Bkz.Limitte 0/0 Belirsizliği) dönüştürme yapılarak çözüme ulaşılır. Rasyonel ifadelerde, limit…