Limitte ∞/∞ Belirsizliği

Etiketler :
Limitte polinom fonksiyon olarak verilen ifadelerde x değişkeni için bulunan ∞/∞ belirsizliklerinin çözümünde temel mantık olarak en büyük dereceli terime göre paranteze alma işlemi yapılır.Daha sonra genişletilmiş reel sayılardaki limit (Bkz. Genişletilmiş reel sayılarda limit) kurallarına göre hareket edilerek sonuca ulaşılır. 

Kesirli biçimde verilen fonksiyonlarda limit alınırken pay ve paydanın derecesine bakılarak daha kolay bir şekilde limit sonucu bulunabilir. buna göre; Pay ve paydadaki derecelerine bakıldığında; payın derecesi paydadan daha büyük ise limit sonucu +∞ veya -∞ olacaktır. Eğer pay ve payda dereceleri birbirine eşit ise o zaman limit değeri pay ve paydadaki en büyük dereceli terimlerin katsayıları oranı limit sonucunu verir. Eğer payda derecesi daha büyük ise bu durumda limit sonucu 0 olur.

0.∞ belirsizliği, -∞ belirsizliği çözümleri yapılırken ∞/∞ belirsizliği veya 0/0 belirsizliklerine (Bkz.(Limitte 0/0 Belirsizliği) dönüştürme yapılarak çözüme ulaşılır. Rasyonel ifadelerde payda eşitlemesi yoluyla çözüme ulaşılır. Köklü ifadelerde verilen limit hesabı yapılırken eşlenikle çarpma yoluyla çözüme ulaşılır.

Bunun haricindeki diğer belirsizliklerin oluştuğu limit problemleri türev yardımıyla (Bkz. L-Hospital Kuralı) daha kolay çözülebilir.Türev bilmeden ∞/∞ belirsizliği, ∞-∞ belirsizliği ve 0/0 belirsizliği bir nebze çözülebilirken üstel biçimde ortaya çıkan belirsizliklerin çözümünde türev bilmek çözümü bulmada kolaylık sağlayacaktır.

4 yorum:

  1. Hocam cok ayrintli bir anlatim tesekkurler

    YanıtlaSil
  2. Orneklerle konuyu anladim sagolun

    YanıtlaSil
  3. çok yararlıydı gerçekten sağolun 😊

    YanıtlaSil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Küp açılımı özdeşlikleri ve modellemesi30.01.2022 - 0 YorumKüp açılımları ifade edilirken binom açılımı ve üç boyutlu cisimlerin hacim özelliklerinden yararlanılır. Küp; bütün kenarları birbirine eşit olan taban ve yan yüzeyleri kare olan üç boyutlu, kapalı bir geometrik cisimdir. Bir küpün hacmi, taban…
  • İtikafı Bozan Durumlar28.03.2010 - 0 Yorum    İtikâfı Bozan ve Bozmayan Şeyler     271-İtikâf halinde olan bir kimsenin dinî ve tabiî ihtiyaçları için zaruri olarak mescidden dışarı çıkması, itikâfı bozmaz.Örnek: İtikâfda bulunanın (mutekifin) cuma namazını kılmak…
  • Matematik korkusundan nasıl kurtulabilirsiniz?05.02.2009 - 1 YorumDeğişen ve hızla gelişen dünyamızda, genellikle öğrencilere sevilmeyen bir disiplin olarak görülen Matematiğin önemi ve yeri giderek artmaktadır.Matematiğin sözlük anlamı; "biçim, sayı ve çoklukların yapılarını, özelliklerini ve aralarındaki…
  • Ebu el-Vefa ve Matematik27.03.2012 - 0 Yorum İsmi ve künyesi 'Ebu el-Vefa Muhammed bin Muhammed bin Yahya bin İsmail bin el-Abbas el-Büzcani' olan alim, 940 yılında İran'da bulunan Buzgan kasabasında doğmuştur. Bu yüzden 'Ebul Vefa Büzgani' diye meşhur olmuştur. Hem pozitif ilimlerde hem de…
  • GeoGebra Dinamik Matematik Yazılımı07.07.2011 - 0 Yorum GeoGebra Matematik ve Geometri alanında yazılmış dinamik geometri yazılımları arasında yer alıyor. Açık kaynak kodlu olması ve her geçen gün geliştirilebilir içeriği sayesinde yenileşme çabalarına da fırsat vermesiyle de ön plana çıkıyor. GeoGebra…
  • Fonksiyonlarda İşlem konu Özeti05.03.2013 - 0 Yorum FONKSİYONLARDA İŞLEM (Sıralı ikili işlem)  KONUSU ÖZET VE ÖRNEK SORULAR İkili işlemin tanımı, kısa özeti ve işlemin uygulamalarına yönelik örnek sorulardan…
  • Geometri ve Sanat09.12.2012 - 1 Yorum Geometri ve sanat, birbirleri ile bağlantılı olup birbirlerini destekleyen iki alandır. Sanatta geometrinin kullanımı, yüzyıllardan beri süregelmiştir. Sanat eserleri-nin geometrik olması, onlara estetik değerler kazandırmaktadır. Ünlü ressam…
  • Ali Osman Asar, Cebir Kitabı18.11.2012 - 0 YorumGazi Üniversitesi Matematik Ana bilim dalının duayen hocalarından biri olarak emekli olmuş olan Prof. Dr. Ali Osman ASAR, kendi matematik teoremleri ile dünyaca ünlü bir akademisyendir. Ord. Prof. Dr. Cahit ARF ile de akademik bir geçmişi olan ASAR,…