Net Fikir » teorem ispatları » Paralelkenar Özellikleri
Paralelkenar Özellikleri
Etiketler :
alan formülleri
dörtgenler
geometri
ispat
matematik
paralelkenar
teorem ispatları
Paralelkenar, karşılıklı kenar uzunlukları birbirine eşit olan ve iç açıları toplamı 360 derece olan bir dörtgendir.
Paralelkenar, yamuk şeklinin özel halidir bu nedenle yamukta yer alan özellikler paralelkenar için de geçerlidir. Ardışık açıların ölçüleri toplamı 180 derecedir. Karşılıklı kenarları, birbirine paralel ve uzunlukları eşittir. Paralelkenarın karşılıklı açıları birbirine eşittir.
Paralelkenarın köşegenleri birbirini ortalar. Ardışık olmayan köşleri birleştiren köşegen uzunlukları birbirine eşit olmak zorunda değildir.
Birbirine komşu iki iç açısını birleştiren açıortay doğru parçalarının arasında kalan açı 90 derecedir. Yani paralelkenarda ardışık iki açıortay, birbirine dik olarak kesişir.
Paralelkenarda herhangi bir kenar uzunluğu ve o kenara ait yüksekliğinin çarpımı, paralelkenarın alanını verir. Paralelkenarın alanı hesaplanırken oluşan iki üçgenin alanları toplamından yararlanılır. Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur.
Paralelkenarda herhangi bir köşegen, paralelkenarı iki eşit alana ayırır. Köşegenlerle dört üçgene ayrılmış bir paralelkenarın, her bir üçgen bölümünün alanı birbirine eşittir. Paralelkenarın bir kenarı üzerinde rastgele bir nokta seçilip, bu noktadan karşı köşelere birer doğru parçası çizilerek üç üçgen meydana getirildiğinde büyük üçgenin alanı kenarlarda meydana gelen diğer üçgenlerin alanları toplamına eşittir. Ayrıca bu büyük üçgenin alanı, paralelkenarın alanının yarısına eşittir.
Paralelkenarın iç bölgesinden herhangi bir nokta alınıp, bu noktadan köşelere doğru parçaları çizilerek üçgenler oluşturulduğunda, oluşan karşılıklı üçgenlerin alanları toplamı birbirine eşit olur. Oluşan bu üçgenlerden karşılıklı olanlarının alanları toplamı, ayrıca paralelkenar alanının yarısına eşittir.
Bir paralelkenarda alan, bütün dörtgenlerde olduğu gibi eğer köşegen uzunlukları verilirse bu köşegenlerin arasındaki açının ölçüsü biliniyorsa sinüs alan formülü ile bulunabilir. Buna göre paralelkenarın alanı, köşegenler çarpımı ile köşegenlerin arasında kalan açının sinüsünün çarpımının yarısı kadar olur. Bu özellik üçgenin sinüs alan bağıntısı ile alan hesabı uygulamasının direkt sonucudur. Paralelkenarda köşegenler birbirini ortaladığından, köşegenler yardımıyla paralelkenarda oluşan dört üçgen için, ayrı ayrı sinüs alan bağıntıları yazılıp, bulunan bütün sonuçlar toplandığında, paralelkenarın alan bağıntısı elde edilir.
Bir paralelkenarın köşelerinden, herhangi bir doğruya çizilen dikme parçalarının uzunlukları karşılıklı toplamları birbirine eşit olur. Bu özellik, esasında yamuktaki orta tabanın, paralelkenar üzerinde gizlenmiş durumudur.
Üçgen benzerliği, paralelkenarda uzunluk hesaplamalarında sıklıkla kullanılan bir konudur. Açıların eşitliği yazıldığı zaman paralellik özelliğinden yararlanarak (veya sonradan ek paralel çizgiler yardımıyla) yeni üçgenler oluşturulup üçgenlerin benzerliğinden çeşitli uzunluklar hesaplanır. Aşağıda benzerlik yardımıyla bulunan bazı kolay sonuçlar verilmiştir.
Benzerlik yardımıyla köşegen üzerinde yer alan parçaların, diğer köşegenle kesilmesi sonucu arasında kalan kenar uzunluklarını hesaplayabiliriz. Aşağıda paralelkenarda benzerlik uygulaması açıklanmıştır.
Paralelkenarda alan uygulamaları için de benzerlik teoremleri sıklıkla kullanılır. (Bkz. Paralelkenarda Alan Hesabı) Alan uygulamalarında, çeşitli tabanlara sahip üçgenler belli oranlarla bölünerek oluşturulan yeni üçgen parçaları yardımıyla, eş yükseklikler kullanılarak paralelkenar parçalanıp bölümlere ayrılabilir.
Kenar uzunlukları a ve b, köşegen uzunlukları da e ve f olan bir paralelkenarda, oluşan ABC üçgeninde veya ADC üçgeninde, köşegenler ve kenarlar arasında kenarortay teoremi uygulandığı zaman yeni bir teorem elde edilir. Bu teoreme göre, paralelkenarda köşegenlerin kareleri toplamı, paralelkenarın kenarlarının kareleri toplamının iki katına eşit olur. (Kenarortay teoremi ile ilgili ayrıntılı bilgiye ulaşmak için bağlantıyı kullanabilirisiniz. https://muallims.blogspot.com/2013/05/kenarortay-teoremi-ispat.html)

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

Aşağıdaki Yazılar İlginizi Çekebilir!!!
29.03.2021 - 0 YorumAçı Kenar Açı (A.K.A.) Eşliği: İki üçgenin karşılıklı birer kenarı ve bu kenara komşu olan açıları arasında eşlik varsa, "iki üçgen birbirine eştir" denir. Eş olan ikizkenar üçgenlerde eşit uzunluğa sahip olan kenarların arasındaki açılar, aynı…
18.04.2013 - 5 Yorum Bir çemberde iki küçük yayın eş olması içi gerekli ve yeterli koşul, bu yayların merkez açılarının eş olmasıdır. İki teğet arasında kalan yayın ölçüsü ile açının ölçüsü bütünlerdir .Yani ölçüleri toplamı 180 derecedir. Köşesi çemberin…
23.04.2009 - 20 YorumTürk ulusunun birlik ve bütünlüğün sembolü olan Türk Bayrağı, anayasanın 3. maddesine göre, "şekli kanunda belirtilen, beyaz ay yıldızlı al bayraktır." Bayrağın Tarihi : Osmanlı Devleti'nden önceki Türk devletlerinde kullanılan bayrak renk ve…
25.09.2014 - 0 YorumPascal özdeşliği veya Pascal üçgeni (Hayyam üçgeni) olarak isimlendirilen bu kavramlar; aralarında Ömer Hayyam’ın da bulunduğu Hint, Çin ve İslam medeniyetlerindeki matematikçi ve düşünürler tarafından Pascal’dan çok önceleri ele alınmış ve…
25.06.2009 - 0 Yorum Allah (c.c) katında zamanların değerleri birbirine eşittir. Ancak öyle zamanlar vardır ki o zamanlarda öyle hadiseler olur ki, o vakte diğer zaman dilimlerinden daha üstün bir değer kazandırır. Receb-i şerîfin ilk Cuma gecesine isabet eden Regâib…
16.03.2016 - 0 Yorum "Kur’an-ı Kerim’de 240 yerde zikredilen “insan” kelimesi bünyesinde muhabbet ve insanlarla irtibatı temsil eden “üns” ve unutmak anlamındaki “nesy” olmak üzere iki kök mana barındırmaktadır. Bünyemize yerleştirilmiş olan unutma özelliği bağlamında…
08.09.2008 - 0 Yorumİnsanların fıtratında var alan ebeveyn olma içgüdüsü, tarifi imkânsız bir duygudur. Her insan, içindeki bu duyguyu yaşatmak için, elinden ne geliyorsa yapmak ve bu emeline ulaşmak için doğal olarak çaba gösterir. Kimileri doğal yollardan çocuk…
13.03.2025 - 0 YorumAllah ﷻ kullarına çok şefkatlidir. Cenâb-ı Hak, "Allah kullarına çok şefkatlidir." (Al-i İmran, 30) beyanıyla eğer âhiret şefkatini kastetmişse, o yalnızca müminlere mahsustur, şayet dünya şefkatini kastetmişse, bu şefkat herkes içindir. Allah…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Emekleriniz için çok teşekkürler.
YanıtlaSil👍🏻
YanıtlaSilAllah razı olsun
YanıtlaSil