Paralelkenar Özellikleri

Etiketler :
Paralelkenar, karşılıklı kenar uzunlukları birbirine eşit olan ve iç açıları toplamı 360 derece olan bir dörtgendir. 
Paralelkenar, yamuk şeklinin özel halidir bu nedenle yamukta yer alan özellikler paralelkenar için de geçerlidir. Ardışık açıların ölçüleri toplamı 180 derecedir. Karşılıklı kenarları, birbirine paralel ve uzunlukları eşittir. Paralelkenarın karşılıklı açıları birbirine eşittir. 
Paralelkenarın köşegenleri birbirini ortalar. Ardışık olmayan köşleri birleştiren köşegen uzunlukları birbirine eşit olmak zorunda değildir. 
Birbirine komşu iki iç açısını birleştiren açıortay doğru parçalarının arasında kalan açı 90 derecedir. Yani paralelkenarda ardışık iki açıortay, birbirine dik olarak kesişir. 
Paralelkenarda herhangi bir kenar uzunluğu ve o kenara ait yüksekliğinin çarpımı, paralelkenarın alanını verir. Paralelkenarın alanı hesaplanırken oluşan iki üçgenin alanları toplamından yararlanılır. Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur.
Paralelkenarda herhangi bir köşegen, paralelkenarı iki eşit alana ayırır. Köşegenlerle dört üçgene ayrılmış bir paralelkenarın, her bir üçgen bölümünün alanı birbirine eşittir. Paralelkenarın bir kenarı üzerinde rastgele bir nokta seçilip, bu noktadan karşı köşelere birer doğru parçası çizilerek üç üçgen meydana getirildiğinde büyük üçgenin alanı kenarlarda meydana gelen diğer üçgenlerin alanları toplamına eşittir. Ayrıca bu büyük üçgenin alanı, paralelkenarın alanının yarısına eşittir.

Paralelkenarın iç bölgesinden herhangi bir nokta alınıp, bu noktadan köşelere doğru parçaları çizilerek üçgenler oluşturulduğunda, oluşan karşılıklı üçgenlerin alanları toplamı birbirine eşit olur. Oluşan bu üçgenlerden karşılıklı olanlarının alanları toplamı, ayrıca paralelkenar alanının yarısına eşittir.  
Bir paralelkenarda alan, bütün dörtgenlerde olduğu gibi eğer köşegen uzunlukları verilirse bu köşegenlerin arasındaki açının ölçüsü biliniyorsa sinüs alan formülü ile bulunabilir. Buna göre paralelkenarın alanı, köşegenler çarpımı ile köşegenlerin arasında kalan açının sinüsünün çarpımının yarısı kadar olur. Bu özellik üçgenin sinüs alan bağıntısı ile alan hesabı uygulamasının direkt sonucudur. Paralelkenarda köşegenler birbirini ortaladığından, köşegenler yardımıyla paralelkenarda oluşan dört üçgen için, ayrı ayrı sinüs alan bağıntıları yazılıp, bulunan bütün sonuçlar toplandığında, paralelkenarın alan bağıntısı elde edilir.
Bir paralelkenarın köşelerinden, herhangi bir doğruya çizilen dikme parçalarının uzunlukları karşılıklı toplamları birbirine eşit olur. Bu özellik, esasında yamuktaki orta tabanın, paralelkenar üzerinde gizlenmiş durumudur.


Üçgen benzerliği, paralelkenarda uzunluk hesaplamalarında sıklıkla kullanılan bir konudur. Açıların eşitliği yazıldığı zaman paralellik özelliğinden yararlanarak (veya sonradan ek paralel çizgiler yardımıyla) yeni üçgenler oluşturulup üçgenlerin benzerliğinden çeşitli uzunluklar hesaplanır. Aşağıda benzerlik yardımıyla bulunan bazı kolay sonuçlar verilmiştir.
Benzerlik yardımıyla köşegen üzerinde yer alan parçaların, diğer köşegenle kesilmesi sonucu arasında kalan kenar uzunluklarını hesaplayabiliriz. Aşağıda paralelkenarda benzerlik uygulaması açıklanmıştır.
Paralelkenarda alan uygulamaları için de benzerlik teoremleri sıklıkla kullanılır. (Bkz. Paralelkenarda Alan Hesabı) Alan uygulamalarında, çeşitli tabanlara sahip üçgenler belli oranlarla bölünerek oluşturulan yeni üçgen parçaları yardımıyla, eş yükseklikler kullanılarak paralelkenar parçalanıp bölümlere ayrılabilir. 

Kenar uzunlukları a ve b, köşegen uzunlukları da e ve f olan bir paralelkenarda, oluşan ABC üçgeninde veya ADC üçgeninde, köşegenler ve kenarlar arasında kenarortay teoremi uygulandığı zaman yeni bir teorem elde edilir. Bu teoreme göre, paralelkenarda köşegenlerin kareleri toplamı, paralelkenarın kenarlarının kareleri toplamının iki katına eşit olur. (Kenarortay teoremi ile ilgili ayrıntılı bilgiye ulaşmak için bağlantıyı kullanabilirisiniz. https://muallims.blogspot.com/2013/05/kenarortay-teoremi-ispat.html)

3 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Matematikçiler Tarih Şeridi21.05.2014 - 5 YorumGeçmişten günümüze kadar matematikte emek sarfetmiş bilim insanlarından bazılarını, bir tarih şeridi halinde görmek istersek, aşağıdaki gibi bir pano düzenleyebiliriz. Bu tarih şeridine benzer bir çalışmayı, Matematik sınıflarımızda değerlendirerek,…
  • Asal Sayılar ve Bölen Durumları19.01.2015 - 0 Yorum Matematik öğretmeni Mehmet Arslan Hocamızın kendi el yazısı ile oluşturduğu, asal sayı ve bölen sayıları için örnek problemlerin ve özelliklerin oluşturduğu karalamaları sizinle paylaşıyoruz.Güzel el yazısı ve kısa özeti için kendisine…
  • Eşkenar üçgen ve özellikleri20.05.2020 - 0 YorumÜç kenar uzunluğu ve bütün iç açıları ölçüleri, birbirine eşit olan üçgene; eşkenar üçgen adı verilir. Eşkenar üçgende, tüm iç açıları ölçüleri: 60 derecedir. Tüm dış açıların ölçüleri ise 120 derecedir.Eşkenar üçgende, bütün kenarortay uzunlukları…
  • Matematik Öğretmenliği Üniversiteleri13.07.2012 - 0 Yorum Matematik öğretmeni olmak için Eğitim fakültelerinden Matematik Öğretmenliği bölümü veya ilköğretim Matematik Öğretmenliği bölümünü okumanız / Fen Edebiyat Fakültelerinden Matematik bölümünü okuyarak Pedegojik Formasyon belgesi almanız…
  • Nemime-Laf taşıma (Koğuculuk)15.05.2022 - 0 YorumSözlükte “fısıltı halinde konuşmak, birinin sözünü yalan katarak nakletmek” anlamındaki nemm kökünden türeyen nemîme kelimesi, “insanlar arasında kötülük, düşmanlık ve bozgunculuk maksadıyla söz taşıma, kovculuk yapma, gammazlık” demektir.…
  • Dikkat Eksikliği ve Hiperaktivite01.12.2011 - 0 Yorum Namık Kemal Üniversitesi (NKÜ) Psikiyatri Ana Bilim Dalı Başkanı Doç. Dr. Sultan Doğan, dikkat eksikliği ve hiperaktivitenin son yılların en büyük sağlık sorunlarından biri haline geldiğini söyledi.Doç. Dr. Doğan, çocukken başlayan dikkat eksikliği…
  • Büyük deha Jean d'Alembert08.01.2010 - 0 YorumJean le Rond d'Alembert (d. 16 Kasım 1717 – ö. 29 Ekim 1783 adı, Notre Dame de Paris yöresinde küçük bir kilisenin adı olan Saint-Jean-Le Rond'tan gelmektedir. Chevalier Destouches'in gayri meşru oğlu olan d'Alembert, annesi tarafından…
  • Matematik ve Gauss08.01.2010 - 0 YorumJohann Carl Friedrich Gauss ya da Gauß (30 Nisan 1777, Braunschweig, Almanya – 23 Şubat 1855, Göttingen) İşçi kökenli anne babanın oğlu Gauss, 1777'de Almanya'nın Brunswick kentinde doğdu. Babasının yaptığı hesapları izlediği sırada, ailesi onun…