Net Fikir » teorem ispatları » Paralelkenar Özellikleri
Paralelkenar Özellikleri
Etiketler :
alan formülleri
dörtgenler
geometri
ispat
matematik
paralelkenar
teorem ispatları
Paralelkenar, karşılıklı kenar uzunlukları birbirine eşit olan ve iç açıları toplamı 360 derece olan bir dörtgendir.
Paralelkenar, yamuk şeklinin özel halidir bu nedenle yamukta yer alan özellikler paralelkenar için de geçerlidir. Ardışık açıların ölçüleri toplamı 180 derecedir. Karşılıklı kenarları, birbirine paralel ve uzunlukları eşittir. Paralelkenarın karşılıklı açıları birbirine eşittir.
Paralelkenarın köşegenleri birbirini ortalar. Ardışık olmayan köşleri birleştiren köşegen uzunlukları birbirine eşit olmak zorunda değildir.
Birbirine komşu iki iç açısını birleştiren açıortay doğru parçalarının arasında kalan açı 90 derecedir. Yani paralelkenarda ardışık iki açıortay, birbirine dik olarak kesişir.
Paralelkenarda herhangi bir kenar uzunluğu ve o kenara ait yüksekliğinin çarpımı, paralelkenarın alanını verir. Paralelkenarın alanı hesaplanırken oluşan iki üçgenin alanları toplamından yararlanılır. Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur.
Paralelkenarda herhangi bir köşegen, paralelkenarı iki eşit alana ayırır. Köşegenlerle dört üçgene ayrılmış bir paralelkenarın, her bir üçgen bölümünün alanı birbirine eşittir. Paralelkenarın bir kenarı üzerinde rastgele bir nokta seçilip, bu noktadan karşı köşelere birer doğru parçası çizilerek üç üçgen meydana getirildiğinde büyük üçgenin alanı kenarlarda meydana gelen diğer üçgenlerin alanları toplamına eşittir. Ayrıca bu büyük üçgenin alanı, paralelkenarın alanının yarısına eşittir.
Paralelkenarın iç bölgesinden herhangi bir nokta alınıp, bu noktadan köşelere doğru parçaları çizilerek üçgenler oluşturulduğunda, oluşan karşılıklı üçgenlerin alanları toplamı birbirine eşit olur. Oluşan bu üçgenlerden karşılıklı olanlarının alanları toplamı, ayrıca paralelkenar alanının yarısına eşittir.
Bir paralelkenarda alan, bütün dörtgenlerde olduğu gibi eğer köşegen uzunlukları verilirse bu köşegenlerin arasındaki açının ölçüsü biliniyorsa sinüs alan formülü ile bulunabilir. Buna göre paralelkenarın alanı, köşegenler çarpımı ile köşegenlerin arasında kalan açının sinüsünün çarpımının yarısı kadar olur. Bu özellik üçgenin sinüs alan bağıntısı ile alan hesabı uygulamasının direkt sonucudur. Paralelkenarda köşegenler birbirini ortaladığından, köşegenler yardımıyla paralelkenarda oluşan dört üçgen için, ayrı ayrı sinüs alan bağıntıları yazılıp, bulunan bütün sonuçlar toplandığında, paralelkenarın alan bağıntısı elde edilir.
Bir paralelkenarın köşelerinden, herhangi bir doğruya çizilen dikme parçalarının uzunlukları karşılıklı toplamları birbirine eşit olur. Bu özellik, esasında yamuktaki orta tabanın, paralelkenar üzerinde gizlenmiş durumudur.
Üçgen benzerliği, paralelkenarda uzunluk hesaplamalarında sıklıkla kullanılan bir konudur. Açıların eşitliği yazıldığı zaman paralellik özelliğinden yararlanarak (veya sonradan ek paralel çizgiler yardımıyla) yeni üçgenler oluşturulup üçgenlerin benzerliğinden çeşitli uzunluklar hesaplanır. Aşağıda benzerlik yardımıyla bulunan bazı kolay sonuçlar verilmiştir.
Benzerlik yardımıyla köşegen üzerinde yer alan parçaların, diğer köşegenle kesilmesi sonucu arasında kalan kenar uzunluklarını hesaplayabiliriz. Aşağıda paralelkenarda benzerlik uygulaması açıklanmıştır.
Paralelkenarda alan uygulamaları için de benzerlik teoremleri sıklıkla kullanılır. (Bkz. Paralelkenarda Alan Hesabı) Alan uygulamalarında, çeşitli tabanlara sahip üçgenler belli oranlarla bölünerek oluşturulan yeni üçgen parçaları yardımıyla, eş yükseklikler kullanılarak paralelkenar parçalanıp bölümlere ayrılabilir.
Kenar uzunlukları a ve b, köşegen uzunlukları da e ve f olan bir paralelkenarda, oluşan ABC üçgeninde veya ADC üçgeninde, köşegenler ve kenarlar arasında kenarortay teoremi uygulandığı zaman yeni bir teorem elde edilir. Bu teoreme göre, paralelkenarda köşegenlerin kareleri toplamı, paralelkenarın kenarlarının kareleri toplamının iki katına eşit olur. (Kenarortay teoremi ile ilgili ayrıntılı bilgiye ulaşmak için bağlantıyı kullanabilirisiniz. https://muallims.blogspot.com/2013/05/kenarortay-teoremi-ispat.html)

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

İlginizi Çekecek Diğer Yazılarımız
Aşağıdaki Yazılar İlginizi Çekebilir!!!
13.04.2012 - 0 Yorum Allahü Teâlâ’ya zatının, sıfatının,esmasının ve efalinin hudutsuzluğunca, yarattığı mahlukatın nefesleri adedince, hamd olsun! Onun sevgili Resûlü, Muhammed aleyhisselâma göklerdeki yıldızların, denizlerdeki kum tanelerinin ve meleküt alemi…
22.04.2009 - 17 Yorum“Müsellesin, zaviyetan-ı dahiletan mecmu’ü 180 derece ve müselles-i mütesaviyü’l-adla, zaviyeleri biribirine müsavi müselles demektir." Osmanlı imaparatorluğu, hakim olduğu coğrafya şartlarına göre kendilerine has Arapça, Farsça ve Türkçe…
06.05.2009 - 0 Yorumİçinde bulunduğumuz yüzyılda yapılan bilimsel araştırmalar göstermiştir ki; trigonometriye ait temel bilgiler, 8. ile 16. yüzyıl Türk - İslam Dünyası matematikçileri tarafından ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir. Bunun…
26.11.2016 - 1 Yorum Çarpım türevi alınırken fonksiyonları öncelikle çarpıp daha sonra türev almak daha zor olacağından çarpım türevini bilmek işlemlerde bizlere kolaylık sağlayacaktır. Kolayca formüle edilebilen çarpım türevine göre iki fonksiyon verildiğinde çarpım…
13.04.2012 - 0 Yorum Timur'un oğlu Şahruh'un oğludur. 1393 yılında Sultaniye kentinde doğmuştur. Timur'un öldüğü sıralarda Uluğ Bey Semerkand'da bulunuyordu. Maveraünnehir'in Halil Sultan'ın saldırısı ve işgali üzerine, babasının yanına gitmek zorunda kalmıştır. Babası…
09.01.2013 - 0 Yorum Matematik zevkini tatmak için matematiğin çevremizdeki nesnelerle çok az ilgisi olmadığını kavramak gerekir. Matematik, gelir-gider dengesini bulmak için kullanılan ya da karmaşık hesaplamalarıyla bizi sıkan bir konu değildir. Çok az kişi…
19.04.2013 - 0 Yorumİbn Zerkale (ö. 493-1100) Endülüslü astronom ve matematikçidir. Ebû İshâk İbrâhîm b. Yahya en-Nakkâş et-Tuleytûlî el-Kurtubî. Hayatı hakkında çok az şey bilinmektedir. XI. yüzyılın ilk çeyreğinde muhtemelen Tuleytula'da (Toledo) doğmuştur.…
08.04.2013 - 0 Yorum Üçgenin içerisinde alınan rastgele bir noktadan üçgenin kenarlarına dikmeler çizildiğinde bu üçgende carnot teoremi uygulanabilir. Bu teoremin uygulanması için üçgenin iç bölgesinde rastgele bir noktadan kenarlara dikmeler çizilmelidir. Bu…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Emekleriniz için çok teşekkürler.
YanıtlaSil👍🏻
YanıtlaSilAllah razı olsun
YanıtlaSil