Paralelkenarda Alan Hesabı

Etiketler :

Bir paralelkenarda, alan hesabı için taban uzunluğu ve yükseklik bilinmelidir. Paralelkenarın yüksekliği, paralelkenar içerisinde bir köşeden karşı kenara dik uzaklık olarak çizilebileceği gibi, o kenarın uzantısına da çizilebilir. 

Paralelkenarda herhangi bir kenar uzunluğu ve o kenara ait yüksekliğinin çarpımı, paralelkenarın alanını verir. Paralelkenarın alanı hesaplanırken oluşan iki üçgenin alanları toplamından yararlanılır. Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur. 

Paralelkenarda herhangi bir köşegen, paralelkenarı iki eşit alana ayırır. Köşegenlerle dört üçgene ayrılmış bir paralelkenarın, her bir üçgen bölümünün alanı birbirine eşittir. 
Paralelkenarın bir kenarı üzerinde rastgele bir nokta seçilip, bu noktadan karşı köşelere birer doğru parçası çizilerek üç üçgen meydana getirildiğinde büyük üçgenin alanı kenarlarda meydana gelen diğer üçgenlerin alanları toplamına eşittir. Ayrıca bu büyük üçgenin alanı, paralelkenarın alanının yarısına eşittir.

Paralelkenarın iç bölgesinden herhangi bir nokta alınıp, bu noktadan köşelere doğru parçaları çizilerek üçgenler oluşturulduğunda, oluşan karşılıklı üçgenlerin alanları toplamı birbirine eşit olur. Oluşan bu üçgenlerden karşılıklı olanlarının alanları toplamı, ayrıca paralelkenar alanının yarısına eşittir.  
Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur. Bir paralelkenarda alan, bütün dörtgenlerde olduğu gibi eğer köşegen uzunlukları verilirse bu köşegenlerin arasındaki açının ölçüsü biliniyorsa sinüs alan formülü ile bulunabilir. Buna göre paralelkenarın alanı, köşegenler çarpımı ile köşegenlerin arasında kalan açının sinüsünün çarpımının yarısı kadar olur. Bu özellik üçgenin sinüs alan bağıntısı ile alan hesabı uygulamasının direkt sonucudur. Paralelkenarda köşegenler birbirini ortaladığından, köşegenler yardımıyla paralelkenarda oluşan dört üçgen için, ayrı ayrı sinüs alan bağıntıları yazılıp, bulunan bütün sonuçlar toplandığında, paralelkenarın alan bağıntısı elde edilir.
Paralelkenarda benzerlik teoremleri kullanılarak, alan hesabı yapılabilir. Bunun için verilen paralelkenar eş yüksekliklere sahip üçgenlere ayrılarak, taban kenarlarına göre alan oranları yazılır. Buna göre bütün üçgen parçalarının alanları toplamı ile paralelkenarın tüm alanı bulunur.

Paralelkenarda alan uygulamları ile ilgili bazı örnekler aşağıda verilmiştir. Çözüm yollarını inceleyebilirsiniz.  




Paralelkenarın alanı vektörel olarak bulunurken, paralelkenarın birbirinden farklı uzunluğa sahip olan kenarlarını taşıyan, taşıyıcı kenar vektörlerinin normları ve bu vektörlerin aralarındaki açının sinüs değerinin çarpımı ile alan hesaplaması yapılır.

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Ah! Matematik27.04.2014 - 0 YorumMatematik eğitim hakkında öğrencilerin çektiği sıkıntılar, başarısızlık nedenleri ve matematik başarısında nelerin yapılması gerektiği konusunda güzel bir inceleme yazısına rastladım.Sizinle paylaşmak istedim. "Matematik, bir disiplinler manzumesi……
  • İslam'da Selâ21.07.2016 - 0 Yorum "Diyanet, geçen hafta yaşadığımız darbe girişimi sırasında bütün camilerde sabaha kadar selâ verdirdiği için bir kesim rahatsız oluyor...Bu yüzden birkaç yerde küçük hadiseler çıktı ama tepkilerin utanmazı İzmir’de yaşandı: Selâdan hoşlanmayan…
  • Bir Vav Hikayesi14.02.2014 - 0 Yorum"İnsan vav şeklinde doğar, bir ara doğrulunca kendini elif sanır.İnsan iki büklüm yaşar, oysa en doğru olduğu gün ölmüştür.Kulluğun manası vavdadır, elif uluhiyetin ve ehadiyetin simgesidir.O yüzden Lafz-ı ilahi elifle başlar. Elif kainatın…
  • Nafile Namazlar20.11.2010 - 0 Yorum403- Beş vakitte kılınan, namazların sünnetlerinden başka birtakım nafile namazlar daha vardır ki, bunlara Tatavvu (Nafile) namazı denir. Bunlar müstahab ve mendub namazlardır. Bunlar, Yüce Allah'a manevî yönden yakınlığa sebeb olurlar. Her…
  • Sessiz Gemi24.10.2017 - 0 Yorum Artık demir almak günü gelmişse zamandan, Meçhule giden bir gemi kalkar bu limandan, Hiç yolcusu yokmuş gibi sessizce alır yol; Sallanmaz o kalkışta ne mendil ne de bir kol. Rıhtımda kalanlar bu seyahatten elemli, Günlerce…
  • Edward Frenkel, Aşk ve Matematik01.02.2016 - 0 Yorum Matematik ve aşk ikilisini bir coşku eşliğinde birleştirmeyi başarabilmiş 2015 Euler kitap ödülü sahibi güzel bir kitabı paylaşmak istiyorum. Ne yazık ki pek çok öğrencinin korkulu dersi haline gelen matematik; Moskova'daki ilkokul yıllarında…
  • Dörtgende Uzunluk Teoremleri ve İspatı03.02.2017 - 0 Yorum Bir dörtgende köşegenler birbirini dik olarak keser ise dörtgenin karşılıklı kenarlarının kareleri toplamı birbirine eşit olur. Bütün konveks dörtgenlerde bu genel özelliktir. Kuralın geçerli olması için köşegenlerin birbirini dik olarak kesmesi…
  • Hacet ve İstihare Namazları23.11.2010 - 0 Yorum   Hacet Namazı: Âhirete veya dünyaya ait bir dileği bulunan kimse, güzelce abdest alır ve bir rivayete göre dört, diğer bir rivayete göre on iki rekât namazı yatsıdan sonra kılar. Sonra Yüce Allah'a hamd eder, Peygamber Efendimize de…