Net Fikir » Tüm Yazılar
Bileşke Fonksiyonun Türevi ve İspatı
Bileşke fonksiyonların türevi bulunurken eğer fonksiyonun bileşkesi bulunabiliyorsa öncelikle fonksiyonun bileşkesi alınır daha sonra istenen türev bulunur. Bileşke fonksiyonun bulanmayacağı veya daha zor olarak hesaplanacağı durumlarda ise öncelikle birinci fonksiyonun türevinde ikinci fonksiyon bilinmeyen yerine yazılır daha sonra ikinci fonksiyonun da ayrı olarak tekrar türevi alınarak çarpım halinde yanına yazılarak bileşke fonksiyonun türevi bulunur.
Bölüm Türevi ve İspatı
Bazı durumlarda bölüm fonksiyonunu bulmak verilen fonksiyonlar açısından kolay olmayabileceği gibi bölme işlemi ile uğraşmak zaman bakımından da sıkıntılı olacaktır. İki fonksiyonun birbirine bölümünün türevi alınırken çarpım türevine benzer biçimde bölüm türevi kuralı yardımıyla hesaplama yapılabilir. Bölüm türevi alınırken çarpım türevindeki gibi
(birinci fonksiyonun (pay fonksiyonun) türevi . ikinci fonksiyonun (payda fonksiyonun) aynısı - birinci fonksiyonun aynısı . ikinci fonksiyonun türevi pay kısmına yazılır daha sonra payda olarak da ikinci fonksiyonun [payda fonksiyonun] karesi yazılır. ) bölüm türev kuralı yazılabilir. Bölüm türevinin ispatı da türevin limit tanımından yararlanarak yapılabilir.
Çarpım Türevi ve İspatı
Çarpım türevi alınırken fonksiyonları öncelikle çarpıp daha sonra türev almak daha zor olacağından çarpım türevini bilmek işlemlerde bizlere kolaylık sağlayacaktır. Kolayca formüle edilebilen çarpım türevine göre iki fonksiyon verildiğinde çarpım türevi;
(birinci fonksiyonun türevi . ikinci fonksiyonun aynısı + birinci fonksiyonun aynısı . ikinci fonksiyonun türevi ) şeklinde yazılabilir.Bu kuralın ispatı yapılırken de türevin limit tanımından yararlanarak çarpımın türevini bulabiliriz.
İkiden fazla fonksiyon verilirse kural aynı şekilde geçerli olur. Örneğin üç fonksiyon verilirse sırasıyla aynı kuralı yazabiliriz.
Polinom Fonksiyonların Türevi ve İspatı
Polinom fonksiyonların türevi alınırken bilinmeyenin kuvveti katsayı olarak bilinmeyenin başına geçer ve kuvvet bir sayı azalarak yeniden yazılır. Köklü ifadelerde polinom fonksiyonlara benzetilerek üslü biçime çevrildikten sonra aynı kural yardımıyla türevi alınabilir. Türevin limitle olan tanımından yola çıkarak bu kuralın ispatı yapılabilir. Aşağıdaki ispatı ve örnekleri inceleyiniz.
f(x+h) ifadesini açarken yukarıdaki özdeşlik kullanımı yerine, binom katsayıları kullanırsak farklı bir yoldan da ispatı gösterebiliriz.
Doğrunun Eğiminde Türev
Verilen bir y=mx+n şeklindeki doğrunun eğimi bulunurken türevden yararlanılabilir. Denklemi verilen doğrunun birinci türevi alınırsa doğrunun eğimine ulaşılmış olur. İspatı yapılırken genel türev tanımından yararlanılarak sonuca ulaşılır. Altta doğrusal fonksiyonun eğimini bulurken kullanacağımız türev kuralının ispatı verilmiştir.
Öklid Algoritması
Öklid Algoritması; (Bkz.Euclidin Hayatı) (MÖ.325-MÖ.265) tarafından bulunan kullanışlı bir bölüm işlevidir. EBOB bulma işlemlerinde genellikle asal çarpanlarına ayrılması yönteminden yararlanırız. Lakin bazı durumlarda bu asal çarpanlarına ayırma işlemi sıkıntılı olabilir. Özellikle büyük sayılar verildiğinde EBOB bulma işlemi, asal çarpan yönteminde daha zor hale gelebilir. İki tam sayının en büyük ortak bölenini bulmak için yapılan
ardışık bölme işlemine öklit algoritması denir.
Ardışık bölme işlemine kalan sıfır oluncaya kadar devam
edilir. Sıfırdan önceki en son bölen sayı EBOB u verir. Öklid algoritmasında yapılması gereken temel mantık; ardışık olarak büyük sayıyı küçük sayıya bölerek kalanın 0 olması durumuna kadar devam edilmesidir. Bazı durumlarda kalan 0 olmayabilir bu durumlarda farklı çözüm yolları geliştirilmelidir.
Pisagor Teoremi Vektörel İspatı
Pisagor Teoremi, dik üçgenlerde geçerli temel bir bağıntıdır. Esasında trigonometride yer alan cosinüs teoreminin dik üçgen için geçerli halidir. Öklid geometrisinde bir dik üçgenin üç kenarı verildiğinde dik kenarların karelerinin toplamları hipotenüsün karesine eşittir. Bilinen en eski matematiksel teoremlerden biridir. Teorem Hint, Çin Mısır ve Mezopotamya Coğrafyasında bilinen ve gündelik yaşamlarında uygulanan bir bağıntı olarak kaynaklarda belirtilse de, yaygın kanaate göre ilk defa Pisagor tarafından yazılı olarak bahsedildiği sanılmaktadır. Pisagor teoreminin bilinen ilk matematiksel ispatı Öklid'in Elementler eserinde yer almıştır.
Pisagor Teoereminin farklı ispatları önceki yazılarımızda verilmiş ve video çözümlerle de bu ispat teknikleri gösterilmiştir. (Bkz. Pisagor teoremi ispatı) Bu yazımızda pisagor teoreminin vektörel yolla nasıl ispat edilebileceğini göstermek istiyoruz. Bunun için önce bir dik üçgeni taşıyıcı kollar olarak üçgenin köşe noktalarından tanımlanmış vektörleri belirliyoruz. Bu belirlediğimiz vektörlerde dört işlem özelliklerinden yararlanarak pisagor teoreminin ispatını aşağıdaki gibi vektörel yolla göstermiş oluruz.
Aşağıdaki Yazılar İlginizi Çekebilir!!!
Matematik Konularından Seçmeler
matematik
(301)
geometri
(133)
ÖSYM Sınavları
(61)
trigonometri
(56)
üçgen
(49)
çember
(36)
sayılar
(32)
fonksiyon
(30)
türev
(26)
alan formülleri
(25)
analitik geometri
(23)
dörtgenler
(19)
denklem
(18)
limit
(18)
belirli integral
(14)
katı cisimler
(12)
istatistik
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(6)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)





















