Pisagor Teoremi Vektörel İspatı

Etiketler :
Pisagor Teoremi, dik üçgenlerde geçerli temel bir bağıntıdır. Esasında trigonometride yer alan cosinüs teoreminin dik üçgen için geçerli halidir. Öklid geometrisinde bir dik üçgenin üç kenarı verildiğinde  dik kenarların karelerinin toplamları hipotenüsün karesine eşittir. Bilinen en eski matematiksel teoremlerden biridir. Teorem Hint, Çin Mısır ve Mezopotamya Coğrafyasında bilinen ve gündelik yaşamlarında uygulanan bir bağıntı olarak kaynaklarda belirtilse de, yaygın kanaate göre ilk defa Pisagor tarafından yazılı olarak bahsedildiği sanılmaktadır. Pisagor teoreminin bilinen ilk matematiksel ispatı Öklid'in Elementler eserinde yer almıştır.
Pisagor Teoereminin farklı ispatları önceki yazılarımızda verilmiş ve video çözümlerle de bu ispat teknikleri gösterilmiştir. (Bkz. Pisagor teoremi ispatı) Bu yazımızda pisagor teoreminin vektörel yolla nasıl ispat edilebileceğini göstermek istiyoruz. Bunun için önce bir dik üçgeni taşıyıcı kollar olarak üçgenin köşe noktalarından tanımlanmış vektörleri belirliyoruz. Bu belirlediğimiz vektörlerde dört işlem özelliklerinden yararlanarak pisagor teoreminin ispatını aşağıdaki gibi vektörel yolla göstermiş oluruz.

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • 2020 TYT Matematik Çözümleri (PDF)04.07.2020 - 0 Yorum2020 TYT Matematik sınavındaki sorular, tamamen lise müfredatı içerisinde olan konuların, yenilikçi problem tarzındaki sorulardan oluşmuştur. Ders kitabı bilgileri ve matematik müfredatı dikkate alınarak hazırlanan sınavda 30 soru Matematik, 10 adet…
  • Kologaritma20.09.2024 - 0 YorumKologaritma, gerçek sayılar kümesinde (R) tanımlı olan bir x sayısının çarpmaya göre tersinin logaritmasıdır. A sayısının kologaritması cologA ile gösterirlir. Buna göre bir sayının kologaritması şu şekilde tanımlanır.: cologx= -…
  • Ramazan-ı Şerifin Bereketi24.12.2008 - 0 Yorum “Şimdilik, mübarek ramazan ayının gelmesini bekliyorum. Bu ayın, Kur'an-ı Mecid'le tam bir münasebeti var. Hem de zata bağlı kemalatı ve onun zuhuratı sayılan işlerin tümünü özünde toplamak sureti ile.. Kaldı ki o, asalet dairesine dahildir.…
  • Düzlemde Dönüşüm Fonksiyonu ve Öteleme01.01.2019 - 0 Yorum Düzlemin noktalarını yine düzlemin noktalarına eşleyen bire bir ve örten fonksiyona düzlemin bir dönüşümü adı verilir. Analitik düzlemde verilen herhangi bir nokta düzlemde bir dönüşüm fonksiyonu altında aynı ya da farklı başka bir noktaya…
  • Din Felsefesi Konu Özeti30.04.2014 - 0 Yorum İlahiyat lisans Tamamlama 2. Sınıf Ders Özetleri  ilitam kitaplarından yararlanarak özetleme yapılmıştır. Özetleme işleminde Ankara İlitam'ın uzaktan eğitim yayınları esas alınmıştır. öğrencilerimize faydalı olması amacıyla burada…
  • Fraktal Geometrinin Tarihçesi06.09.2011 - 0 Yorum Her şey, Benoit Mandelbrot’un kafasında oluşan ve aslında basit gibi görünen bir soru ile başladı: İngiltere’nin kıyı uzunluğu ne kadardır? Yanıtı bulmak için yapılabilecek ilk şey, ölçeği belli bir harita bulduktan sonra, buradan kıyı şeridinin…
  • Menelaus Teoreminin İspatı22.05.2013 - 2 Yorum İskenderiyeli Menelaus (MS.70 – 140), matematikçi ve gökbilimcidir. Yaşamı hakkında çok az bilgi bulunan Menelaus'un hayatını İskenderiye'de geçirdiği çocukluk yıllarının ardından Roma'ya taşındığı tahmin edilmektedir. İskenderiyeli Pappus ve…
  • Üçgende Kenar Bağıntıları27.03.2021 - 0 YorumBir üçgenin çizilebilmesi için belirli şartlar vardır. Bu nedenle üçgen çizimlerini iki adımda inceleyebiliriz. Birincisi; verilen elemanlar üçgen olma özelliğini taşımalıdır. Yani üçgen eşitsizliği ve üçgende açı kenar bağıntıları kurallarına uygun…