Toplam-Fark Formülleri ve İspatları

Etiketler :
Trigonometrik değerleri bilinen iki açının toplamının veya farkının trigonometrik değerlerini hesaplamak için kullanılan formüllerdir. Bu formüllerin iyi bilinmesi yarım açı, dönüşüm ve ters dönüşüm formüllerinin çıkarılması için gerekli olacaktır. Aşağıda sinüs,cosinüs,tanjant ve kotanjant fonksiyonlarının toplam ve fark formülleri verilmiş ve bunların nasıl ortaya çıktığı ispatlanarak gösterilmiştir. Kotanjant formülünün ispatı ayrıca gösterilmemiştir. Bu formülün ispatı için tanjantın ispatı bulunduktan sonra çarpma işlemine göre tersi alındığında kotanjantın değeri bulunmuş olur. 

cos fonksiyonun toplam ve fark eşitliği bulunduktan sonra trigonometrik fonksiyonların birbirine dönüşümleri kullanılarak sinüs fonksiyonun da toplam ve fark formülü elde edilir. Bu iki formülden yararlanarak da tanjant fonksiyonu ile cotanjant fonksiyonlarının toplam ve fark formülleri bulunur.  Tanjatın toplam formülü bulunurken finüs ve cosinüs fonksiyonlarının toplam fark formülleri yazıldıktan sonra birbirine oranlanır. sin(a+ b) ve cos (a+b) ifadelerinin eşiti yerlerine yazıldıktan sonra pay ve payda cosa.cosb ile bölünür. 


Başka bir ispat biçimi olarak aşağıdaki dik üçgenden, eş uzunluk parçaları kullanılarak toplam fark formülleri elde edilebilir.
Öğrencilerimizin sınavlara hazırlanırken sinüs,cosinüs ve özellikle tanjantın toplam ve fark formüllerini bilmesi yararlı olacaktır. Bu formüllerden sadece tanjantı ezberlemeniz durumunda bile pek çok soruyu çözebilirsiniz. Tanjantın formülünden bulduğunuz toplam veya fark açısından yola çıkarak tanjanta uygun bir üçgen çizerseniz trigonometrik oranlardan biri belli iken diğerinin bulunmasından yola çıkarak sizden istenen trigonometrik fonksiyonun değerini bu üçgen yardımıyla bulabilirsiniz.

Farklı bir yoldan,  bu formüllerin birim çember yardımıyla da ispatı mümkündür. Örnek olarak cosinüs fark formülünü birim çemberden şu şekilde ispatlayabiliriz.


Toplam ve fark formüllerinin ispatları cebirsel olarak gösterilebildiği gibi, geometrik olarak da gösterilebilir.Konu ile ilgili diğer yazımız için; (Bkz. Toplam/Fark Formüllerinin Geometrik İspatı) adresini inceleyebilirsiniz. 

Aşağıda yer alan örnekleri inceleyerek, formüllerin nasıl kullanıldığına dair bilgi sahibi olabilirsiniz.




8 yorum:

  1. hocam cos(a-b) ve cos(a+b) nin ispatını ayrıntılı ve şekilli olarak bana gönderebilirseniz çok sevinirim

    YanıtlaSil
    Yanıtlar
    1. sevgili okurumuz; bu yazımızda trigonometrik fonksiyonların toplam ve fark formüllerinin cebirsel ispatları yapılmıştır. bu formüllerden sin ve cos fonksiyonlarının toplam ve fark formüllerinin geometrik gösterimleri için http://muallims.blogspot.com.tr/2014/05/toplam-ve-fark-formulleri-geometrik.html yazımıza bakmanız rica olunur.

      Sil
  2. Hocam Başka ispatıda var bunun

    YanıtlaSil
    Yanıtlar
    1. elbette başka şekillerde de ispatlama yapabilirsiniz. Eğer ispatınızı bizimle paylaşırsanız ismizinle yayınlayabiliriz.iyi çalışmalar

      Sil
  3. Hocam tan bölümünde neden cosx.cosy ye bölüyoruz a b x y fark etmez

    YanıtlaSil
    Yanıtlar
    1. Bölümden sonra aynı cins açıları elde ederek tanjant fonksiyonu yazılabilir.

      Sil
  4. hocam cosa.cosb bölme sebebimiz ne

    YanıtlaSil
    Yanıtlar
    1. Bölüm yapılıp sadeleştirildiğinde tan değerleri ortaya çıkar. tan(a+b) ifadesinin karşılığı tanjant a ve b cinsinden bulunmuş olur

      Sil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • İnsanın musibetlerle imtihanı02.03.2025 - 0 Yorum155. “Şunu bilin ki biraz korku ve açlıkla, mallardan, canlardan ve ürünlerden biraz zayiat verdirmek suretiyle sizi imtihana tâbi tutacağız. Resûlüm! Güçlüklere karşı sabredenleri iyi bir gelecekle müjdele.” 156. “Onlar ki başlarına bir…
  • Sefa Saygılı, Çocuklarımızın Başarısı Elimizde13.05.2014 - 0 Yorum Her çocuğun bilgi, zekâ, kişilik, beceri ve yetenekleri, ilgili oldukları alanlar farklı farklıdır. Diğer çocuklara göre "normal" olan bir şey, bizim çocuğumuza uymayabilir. Her çocuk gibi bizim çocuğumuz da tamamen kendine has gelişimiyle özgün…
  • Ebu Kamil Şuca (H. 236-339)19.04.2012 - 0 Yorum Ebu Kamil Şuca Ünlü Müslüman cebir ve matematik alimidir. İsmi Şuca’ bin Eslem bin Muhammed Hasib el-Mısri olup, künyesi Ebu Kamil’dir. Matematikçiler arasında İbn-i Eslem el-Hasib (hesab, matematik bilgini) adıyla Ünlü oldu. Doğum ve vefat…
  • Analitik geometri ne işe yarar?03.08.2024 - 0 YorumAnalitik geometri, matematiksel ve geometrik problemleri cebirsel yöntemlerle çözmeye yardımcı olan bir alanıdır. Bu konsept, noktaların ve şekillerin koordinatlarını açıklayarak, bunların birbiriyle olan ilişkilerini analiz etmeyi sağlar. Özellikle…
  • Ders Anlatım Föyleri-Dik Üçgen16.11.2014 - 0 YorumÖzel Üçgenler-"Dik Üçgen" konusu örnek ders anlatım föyü çeşitli ders kitaplarından yararlanılarak hazırlanmış olup, azami iki ders saati içersinde bitirilecek şekilde uygulanmalıdır.Öğretmenlere ders anlatımında yararlı olması amacıyla kullanıma…
  • Determinant Hesabı12.01.2025 - 0 YorumBir kare matrisin satır ve sütunlardaki her bir eleman için tüm eş çarpanları (kofaktörleri) tek tek bulunduktan sonra verilen matrisin determinantı, herhangi bir satır ya da sütuna göre açılım yaparak hesaplanabilir. Bir matrisin kofaktör ve…
  • Blaise Pascal ve Tanrı İnancı03.12.2010 - 0 YorumBlaise Pascal, Fransız matematikçi ve filozofudur. 30 yıl savaşlarının kargaşalı döneminde Clermont’ta dünyaya gelmiştir. Babası kraliyet danışmanıydı. Bu sosyal konumu, aileye maddî meselelerden uzak bir hayat sağlıyordu. Blaise üç yaşındayken…
  • Yamukta Özellikler ve İspatları12.02.2017 - 4 Yorum En az iki kenarı paralel olan dörtgene yamuk denir. ABCD yamuğunda, [AB] // [CD]’dır. Yamukta karşılıklı köşelerde yer alan açıların ölçüleri toplamı 180 derece olur.m(A) +m(D) = 180º, m(B) + m(C) = 180º’dir. Yamuğun paralel olan kenarları…