Toplam ve Fark Formülleri Geometrik İspatları

Etiketler :
"Bu geometrik ispat biçimi, Leonard M. Smiley, Alaska Üniversitesi tarafından kosinüs ve sinüs için trigonometrik toplama ve çıkarma formülleri delillerini göstermek için ortaya konmuştur. Toplam ve fark formüllerinin geometrik ispat biçimleri Matematik Dergisi'nin Aralık,1999 sayısında yer almıştır.

Burada yer alan ispat ve deliller sadece "dar" açılar için geçerlidir, ama tamamen sentetik ve minimal diyagram kullanan Öklid geometrisinde yaygın olarak kullanılır. Buradaki deliller kartezyen koordinatları kullanarak standart analitik ispat için ortak olmayacak şekilde genel bir ispat biçimi sunmaya tamamlayıcı niteliktedir." orjinal metin:(http://math.uaa.alaska.edu/~smiley/trigproofs.html)

Aşağıda toplam ve fark formüllerinin geometrik olarak nasıl ispatlanabileceğini gösteren şekiller çizilmiştir. Açıklamalara göre bu toplam ve fark formülleri verilen dar açılar için geçerli olarak geometrik ispatları yapılmış olur.
 
Şekil 1: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde cos ve sin değerleri kenar uzunlukları olarak yazılırsa burada alfa açısının tanjant değerinden cos(a+b) değeri geometrik olarak gösterilmiş olur.

Şekil 2: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde açılara göre cos ve sin değerleri kenar uzunlukları olarak yazılırsa burada h ile gösterilen kenar uzunluğu yazılırsa, aynı şekilde alttaki dik üçgen üzerinden de  kenarı uzunluğu yazılırsa bu iki uzunluğun birbirleri yerine yazılmasıyla yani x uzunluğunda yer alan h değeri için bulunan ifade yazılıp düzenlenirse; cos(a-b) geometrik olarak gösterilmiş olur.  

Şekil 3: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde, açılara göre cos ve sin değerleri kenar uzunlukları olarak yazılır ve buradaki büyük dik üçgende alfa açısının sin değeri yazılıp içler çarpımı yapılarak gerekli düzenlemeler yapılırsa sin(a+b) değeri geometrik olarak gösterilmiş olur. 
Şekil 4: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde, açılara göre cos ve sin değerleri kenar uzunlukları olarak yazılır ve buradaki altta yer alan küçük dik üçgende beta açısına göre h değeri yazılıp, aynı şekilde diğer dik üçgende de x kenarının h'ye bağlı olarak değeri yazılırsa ve burada bulunan h değeri x kenarında yerine yazıldığında gerekli düzenlmeler yapılırsa sin(a-b) değeri geometrik olarak gösterilmiş olur.

Cebirsel ispatları daha önceki yazılarımızda gösterilmişti. (Bkz. Toplam ve fark formülleri) Sitemizde arama yapılarak kapsamlı izahlara ulaşılabilir.  Kısa bir şekilde formülleri burada tekrarlayacak olursak; 

Bu formüllerin ispatında açıların dönüşümünden yararlanılabilir. Formüllerin ispatı yapılırken birim çember özellikleri iyi bilinmelidir.
* Cosinüs trigonometrik fonksiyonunda iki açının toplam formülü (Cosinüs) aşağıdaki gibi gösterilebilir.

* Sinüs trigonometrik fonksiyonunda iki açının fark formülü (Sinüs) aşağıdaki gibi gösterilebilir.

* Sinüs trigonometrik fonksiyonunda iki açının toplam formülü (Sinüs) aşağıdaki gibi gösterilebilir.

* Cosinüs trigonometrik fonksiyonunda iki açının fark formülü (Cosinüs) ispatı da detaylı olarak birim çember üzerinden (Bkz. Toplam ve fark formülleri) adresindeki gibi gösterilebilir.

cos (x-y) formülü için farklı bir ispat yöntemini de birim çember üzerinden aynı açıyı gören kiriş uzunlukları yardımıyla analitik olarak ispatlayabiliriz. Bu ispatı yaparken bilmemiz gereken iki nokta arası uzaklık kavramı ve çemberde kiriş özellikleri kavramlarıdır. Aşağıda verilen ispatı inceleyiniz.

1 yorum:

  1. Hocam gerçekten güzel bir araştırma olmuş.Ellerinize sağlık...

    YanıtlaSil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Hz. Ali'ye göre ahiret alimleri07.01.2018 - 0 YorumAhiret âlimlerinin vasfını Hz. Ali (r.a), tafsilatlı bir şekilde şöyle izah eder: Kalpler, tıpkı kaplara benzer. Onların en hayırlısı iyiliğe kap olanıdır. İnsanlar üç sınıfa ayrılırlar: 1) Rabbanî âlimler, 2) Kurtuluş yolundaki öğrenciler, 3) Her…
  • Eşlik ve Benzerlik Teoremleri29.03.2021 - 0 YorumAçı Kenar Açı (A.K.A.) Eşliği: İki üçgenin karşılıklı birer kenarı ve bu kenara komşu olan açıları arasında eşlik varsa, "iki üçgen birbirine eştir" denir. Eş olan ikizkenar üçgenlerde eşit uzunluğa sahip olan kenarların arasındaki açılar, aynı…
  • Çarpım Türevi ve İspatı26.11.2016 - 1 Yorum Çarpım türevi alınırken fonksiyonları öncelikle çarpıp daha sonra türev almak daha zor olacağından çarpım türevini bilmek işlemlerde bizlere kolaylık sağlayacaktır. Kolayca formüle edilebilen çarpım türevine göre iki fonksiyon verildiğinde çarpım…
  • Yedi Güzel Adam13.05.2010 - 1 Yorum Türk edebiyatında önemli yeri olan Cahit Zarifoğlu'nun şiirinden esinlenerek ortaya çıkan şairler topluluğu; "Yedi Güzel Adam" olarak isimlendirilmiştir. Yedi Güzel Adam Cahit Zarifoğlu’nun soyutlamasıyla yazılmış bir büyük şiirdir. Bu şiirin…
  • Ah! Matematik27.04.2014 - 0 YorumMatematik eğitim hakkında öğrencilerin çektiği sıkıntılar, başarısızlık nedenleri ve matematik başarısında nelerin yapılması gerektiği konusunda güzel bir inceleme yazısına rastladım.Sizinle paylaşmak istedim. "Matematik, bir disiplinler manzumesi……
  • Kaldırımlar14.04.2010 - 0 YorumI Sokaktayım, kimsesiz bir sokak ortasında; Yürüyorum, arkama bakmadan yürüyorum. Yolumun karanlığa saplanan noktasında, Sanki beni bekleyen bir hayal görüyorum. Kara gökler kül rengi bulutlarla kapanık; Evlerin…
  • Çembere Teğet Çizmek20.06.2014 - 0 Yorum Teğet: Bir çembere veya bir eğriye tek bir noktadan geçecek eşkilde çizilen doğruya denir. Teğet doğrusu ile eğrinin veya çemberin kesim noktası sadece bir tanedir. Teğet doğrusu ile çemberin denklemleri birbirine eşitlenip, ortaya çıkan…
  • Toprağı Bol Olsun!18.04.2015 - 0 Yorum Bugün bir arkadaşımızın babasının vefatı haberini aldıktan sonra söylediği "Toprağı bol olsun" ifadesinden sonra yıllar önce zevkle okuduğum İki Dirhem Bir Çekirdek, İskender Pala’nın deyimlerimizin ardındaki bu muhteşem birikime nüfuz ettiği…