Toplam-Fark Formülleri ve İspatları

Etiketler :
Trigonometrik değerleri bilinen iki açının toplamının veya farkının trigonometrik değerlerini hesaplamak için kullanılan formüllerdir. Bu formüllerin iyi bilinmesi yarım açı, dönüşüm ve ters dönüşüm formüllerinin çıkarılması için gerekli olacaktır. Aşağıda sinüs,cosinüs,tanjant ve kotanjant fonksiyonlarının toplam ve fark formülleri verilmiş ve bunların nasıl ortaya çıktığı ispatlanarak gösterilmiştir. Kotanjant formülünün ispatı ayrıca gösterilmemiştir. Bu formülün ispatı için tanjantın ispatı bulunduktan sonra çarpma işlemine göre tersi alındığında kotanjantın değeri bulunmuş olur. 

cos fonksiyonun toplam ve fark eşitliği bulunduktan sonra trigonometrik fonksiyonların birbirine dönüşümleri kullanılarak sinüs fonksiyonun da toplam ve fark formülü elde edilir. Bu iki formülden yararlanarak da tanjant fonksiyonu ile cotanjant fonksiyonlarının toplam ve fark formülleri bulunur.  Tanjatın toplam formülü bulunurken finüs ve cosinüs fonksiyonlarının toplam fark formülleri yazıldıktan sonra birbirine oranlanır. sin(a+ b) ve cos (a+b) ifadelerinin eşiti yerlerine yazıldıktan sonra pay ve payda cosa.cosb ile bölünür. 


Başka bir ispat biçimi olarak aşağıdaki dik üçgenden, eş uzunluk parçaları kullanılarak toplam fark formülleri elde edilebilir.
Öğrencilerimizin sınavlara hazırlanırken sinüs,cosinüs ve özellikle tanjantın toplam ve fark formüllerini bilmesi yararlı olacaktır. Bu formüllerden sadece tanjantı ezberlemeniz durumunda bile pek çok soruyu çözebilirsiniz. Tanjantın formülünden bulduğunuz toplam veya fark açısından yola çıkarak tanjanta uygun bir üçgen çizerseniz trigonometrik oranlardan biri belli iken diğerinin bulunmasından yola çıkarak sizden istenen trigonometrik fonksiyonun değerini bu üçgen yardımıyla bulabilirsiniz.

Farklı bir yoldan,  bu formüllerin birim çember yardımıyla da ispatı mümkündür. Örnek olarak cosinüs fark formülünü birim çemberden şu şekilde ispatlayabiliriz.


Toplam ve fark formüllerinin ispatları cebirsel olarak gösterilebildiği gibi, geometrik olarak da gösterilebilir.Konu ile ilgili diğer yazımız için; (Bkz. Toplam/Fark Formüllerinin Geometrik İspatı) adresini inceleyebilirsiniz. 

Aşağıda yer alan örnekleri inceleyerek, formüllerin nasıl kullanıldığına dair bilgi sahibi olabilirsiniz.




8 yorum:

  1. hocam cos(a-b) ve cos(a+b) nin ispatını ayrıntılı ve şekilli olarak bana gönderebilirseniz çok sevinirim

    YanıtlaSil
    Yanıtlar
    1. sevgili okurumuz; bu yazımızda trigonometrik fonksiyonların toplam ve fark formüllerinin cebirsel ispatları yapılmıştır. bu formüllerden sin ve cos fonksiyonlarının toplam ve fark formüllerinin geometrik gösterimleri için http://muallims.blogspot.com.tr/2014/05/toplam-ve-fark-formulleri-geometrik.html yazımıza bakmanız rica olunur.

      Sil
  2. Hocam Başka ispatıda var bunun

    YanıtlaSil
    Yanıtlar
    1. elbette başka şekillerde de ispatlama yapabilirsiniz. Eğer ispatınızı bizimle paylaşırsanız ismizinle yayınlayabiliriz.iyi çalışmalar

      Sil
  3. Hocam tan bölümünde neden cosx.cosy ye bölüyoruz a b x y fark etmez

    YanıtlaSil
    Yanıtlar
    1. Bölümden sonra aynı cins açıları elde ederek tanjant fonksiyonu yazılabilir.

      Sil
  4. hocam cosa.cosb bölme sebebimiz ne

    YanıtlaSil
    Yanıtlar
    1. Bölüm yapılıp sadeleştirildiğinde tan değerleri ortaya çıkar. tan(a+b) ifadesinin karşılığı tanjant a ve b cinsinden bulunmuş olur

      Sil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Değerlerimiz ve Kültürel Yozlaşma22.09.2008 - 0 Yorum Kültürü kısaca tanımlamak gerekirse, bir milleti oluşturan maddi ve manevi değerlerinin tümü olarak ifade edebiliriz. Roger Garaudy; "Kültür; bir sanat veya edebiyat eserleri müzesi değildir. Tabiatın başka insanların ve bizzat insanın sormuş…
  • Bir Doğru Parçasını İçten/Dıştan Bölen Nokta07.11.2014 - 8 YorumBir doğru parçasını belli bir oranda içten veya dıştan noktanın koordinatları bulunurken o noktalar arasındaki artış miktarından yola çıkarak verilen orana göre, istenen noktanın koordinatları bulunur. Noktanın bir doğru parçasını içten veya…
  • Zalimleri çarpan müthiş 11.02.2021 - 0 YorumTarihte pek çok kavim, azgınlıklarının ve isyanlarının bir sonucu olarak helak olmuşlardır. Bu kavimler, kendilerine gelen peygamberlerin, tebliğ davetinden yüz çevirip yalanlamaları ve Allah’ın emir ve yasaklarına isyan etmiş olmaları sebebiyle,…
  • Matematik ve Müzik21.08.2014 - 0 Yorum Yıllar önce üniversitede matematik eğitimi alırken müzik bölümünde yüksek lisans yapmakta olan bir öğrenci gelerek biz matematik sınıfı öğrencilerine bir anket çalışması düzenlemişti. Ankette yer alan sorular eşliğinde matematikçilerin müzikle…
  • Mukaddes Kitab Kuran-ı Kerim07.01.2009 - 0 Yorum“Kur’an-ı Kerim, Allah tarafından Cebrail vasıtasıyla mahiyeti bilinmeyen bir şekilde son peygamber Hz. Muhammed’e indirilen, Mushaflarda yazılan, tevatürle nakledilen, okunmasıyla ibadet edilen, Fatiha suresiyle başlayıp Nâs suresiyle…
  • İslam Tarihi-1 Konu Özeti14.01.2014 - 0 Yorumİlahiyat lisans Tamamlama 1. Sınıf Ders Özetleri  ilitam kitaplarından yararlanarak özetleme yapılmıştır. Özetleme işleminde Ankara İlitam'ın uzaktan eğitim yayınları esas alınmıştır. öğrencilerimize faydalı olması amacıyla burada…
  • Japon Asıllı Matematikçi Gündüz İkeda01.10.2011 - 0 Yorum Masatoşi Gündüz İkeda (Ikeda Masatoshi Gyunduzu), d. 25 Şubat 1926, Tokyo. ö. 9 Şubat 2003, Ankara), cebirsel sayılara katkılarıyla tanınan Japon asıllı Türk matematik bilgini. 1948'de Osaka Üniversitesi Matematik Bölümü'nü bitirdi. 1953'te…
  • Hacet ve İstihare Namazları23.11.2010 - 0 Yorum   Hacet Namazı: Âhirete veya dünyaya ait bir dileği bulunan kimse, güzelce abdest alır ve bir rivayete göre dört, diğer bir rivayete göre on iki rekât namazı yatsıdan sonra kılar. Sonra Yüce Allah'a hamd eder, Peygamber Efendimize de…