Üçgende Açıortay Dikmeleri

Etiketler :
Açıortay, geometride herhangi bir açıyı iki eşit açı şeklinde bölen doğru parçasıdır. Özel olarak herhangi bir üçgende iç veya dış açılardan herhangi birisini iki eşit ölçüde ayıracak şekilde çizilen doğru parçasına o açının açıortayı denir. Eğer bu açı dış açı ise bu doğru parçası dış açıortay, bölünen bu açı iç açı ise o zaman da bu doğru parçası iç açıortay olarak isimlendirilir. Bir açıya teğet tüm çemberler çizilerek merkezleri birleştirilirse, o açının açıortayı elde edilir. Bu nedenle açıortaylardan açının kollarına indirilen dikmeler, o çemberlerden birinin merkezinden teğetlere inilen yarıçap dikmeleri olacağından, dikmeler birbirine eşit olur. Her iki kolda oluşan üçgenler de birbirine eşit olacağından, dikmelerin açıortay kollarını kestiği noktalar ile açının bulunduğu köşeye olan uzaklıklar eşit olur.

Bir üçgende iç açıortaylar bir noktada kesişir. Bu nokta üçgenin iç teğet çemberinin merkezidir. Bu noktanın iç teğet çemberi olmasının sebebi ise, iç açıortayların kesişim noktasından kenarlara inilen dikmelerin birbirine eşit olmasıdır (çember merkezden teğetlere çizilen doğru parçaları teğete diktir ve hepsi yarıçaptır). Bir üçgende açıortayla ilgili iki önemli bağıntı vardır. Bunlardan birisi (Bkz. Açıortay teoremi) Bu teorem bir tür kenar ve açıortay parçaları oranıdır.
 

Bu teoreme göre üçgenin bir kenar uzunluğu ve o kenar tarafındaki köşe ile açıortayın kenarı kestiği nokta arasındaki uzaklığın oranı, diğer kenarın uzunluğu ve o kenar tarafındaki köşe ile açıortayın kenarı kestiği nokta arasındaki uzaklığın oranına eşittir.
Açıortayın kollarına inilen dikme uzunlukları birbirine eşittir. Ayrıca bu dikmelerin ayırdığı parçaların da uzunlukları eşittir. Alan problemlerinde bu özellik dikkate alınmalıdır.
Alan problemlerinde  açıortay oranı ile birlikte yükseklikleri aynı olan üçgenlerin tabanlarının oranından da yaralanılarak sorular çözülür.
Açıortay dikmelerini daha iyi anlamak için aşağıdaki materyal geliştirme ve modelleme çalışmasını izleyebilirsiniz.
Matematiksel model oluşturma ve materyal geliştirme ile ilgili Gazi Üniversitesi Öğretim üyesi Prof.Dr Ahmet Arıkan yönetiminde öğrenciler tarafından hazırlanmış somut bir model. Bu model üzerinde açıortayın bazı özelliklerini rahatlıkla somut bir şekilde görebiliyorsunuz.

Video izlenmiyor veya görüntülenmiyor ise aşağıdaki link üzerinden picasa web albümünden tüm materyal geliştirme ve modelleme videolarına ulaşabilir buradan bilgisayarınıza indirerek izleyebilirsiniz. video url: Materyal Geliştirme-Youtube Muallim

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Armstrong Sayısı (Narsistik Sayılar)19.02.2023 - 0 YorumArmstrong Sayısı Nedir? Armstrong sayıları, ismini Amerikalı matematikçi Michael F. Armstrong’dan almıştır. Armstrong, 1969 yılında bir matematik yarışmasında bu tür sayıları tanımlamıştır. Bu çeşit sayılar aslında daha öncesinden bilinmektedir.…
  • Matematikçiler Tarih Şeridi21.05.2014 - 5 YorumGeçmişten günümüze kadar matematikte emek sarfetmiş bilim insanlarından bazılarını, bir tarih şeridi halinde görmek istersek, aşağıdaki gibi bir pano düzenleyebiliriz. Bu tarih şeridine benzer bir çalışmayı, Matematik sınıflarımızda değerlendirerek,…
  • John Forbes Nash22.09.2011 - 0 Yorum John Forbes Nash, 13 Haziran 1928’de Batı Virginia, Amerika’da dünyaya geldi. Oğluyla aynı adı taşıyan baba John Nash, Teksas A&M Üniversitesi mezunu bir elektrik mühendisi, annesi Margaret Virginia Martin ise bir Latince ve İngilizce…
  • Ateşperest ile Yetim18.06.2011 - 0 YorumVaktiyle bir ateşperest, oğlunu evlendirmektedir. Düğün günü çok koyun ve inek kesilir. Et kokuları mahalleyi sarar. Ancak evin bitişiğinde, Müslüman, dul bir kadın, dört yetimiyle yaşamaktadır. Hepsi de günlerdir açtırlar. Kadıncağız, düğün evinin…
  • Din Felsefesi Konu Özeti30.04.2014 - 0 Yorum İlahiyat lisans Tamamlama 2. Sınıf Ders Özetleri  ilitam kitaplarından yararlanarak özetleme yapılmıştır. Özetleme işleminde Ankara İlitam'ın uzaktan eğitim yayınları esas alınmıştır. öğrencilerimize faydalı olması amacıyla burada…
  • Hucurat Suresi Meali19.05.2011 - 0 Yorum Hucurat sûresinde müminlere bazı görgü kuralları, Peygamber'e ve birbirlerine karşı nasıl davranacakları öğretilmektedir. Medine'de inmiştir. 18 (onsekiz) âyettir. Adını, dördüncü âyetteki "odalar" anlamına gelen "hucurât" kelimesinden…
  • Matematik korkusundan nasıl kurtulabilirsiniz?05.02.2009 - 1 YorumDeğişen ve hızla gelişen dünyamızda, genellikle öğrencilere sevilmeyen bir disiplin olarak görülen Matematiğin önemi ve yeri giderek artmaktadır.Matematiğin sözlük anlamı; "biçim, sayı ve çoklukların yapılarını, özelliklerini ve aralarındaki…
  • Kare matrisin kuvveti25.10.2024 - 0 YorumKaresel Matris: satır ve sütun sayısının eşit olduğu, yani kare şeklinde olan matristir. Kare matris, boyutu nxn tipinde bir matristir. Kare matrislerde determinant hesaplanabilir ve tersi alınabilir. Ayrıca özdeğerler ve özvektörler gibi önemli…