Bir üçgenin bütün kenar uzunlukları verildiğinde alan formülü Heron bağıntısı ile bulunabilir. Yarıçevre uzunluğu u=(a+b+c)/2 olarak hesaplandıktan sonra yukarıdaki örneklerde de görüldüğü gibi u formülü kullanılarak üçgenin alanı bulunur.
Net Fikir » üçgenin alanı » Üçgenin Heron alan Bağıntısı (U Formülü)
Üçgenin Heron alan Bağıntısı (U Formülü)
Etiketler :
alan formülleri
geometri
ispat
matematik
teorem ispatları
üçgen
üçgenin alanı
Bir üçgenin bütün kenar uzunlukları verildiğinde alan formülü Heron bağıntısı ile bulunabilir. Yarıçevre uzunluğu u=(a+b+c)/2 olarak hesaplandıktan sonra yukarıdaki örneklerde de görüldüğü gibi u formülü kullanılarak üçgenin alanı bulunur.
İskenderiyeli Heron (MS 10 - MS 70?), matematikçi ve mühendistir. Genellikle antik çağın en büyük deneycisi olarak kabul edilir ve çalışmaları Helenistik bilimsel geleneğin temsilcisidir. İlk buhar türbünlü motoru icat ettiği düşünülmektedir. Heron motoru (aeolipile) adı verilen buharla çalışan bir cihazın iyi bilinen bir açıklamasını yayınlamıştır. En ünlü icatları arasında, karada rüzgârın en eski örneğini oluşturan rüzgar çarkı çalışması vardır. Mechanics adlı çalışmasında pantografları tanımlamıştır. İlk otomat makinesi de onun yapımlarından biridir. Makinenin üstündeki bir yuvadan bir bozuk para sokulduğunda, belirli bir miktarda su akıtılmaktadır. Ayrıca optikle de uğraşmış ve Katoptrikos adlı optik kitabını yazmıştır. Bu kitapta içbükey dışbükey ve düzlem aynaların işleyişlerini ele almıştır. İlkesel bir şekilde ışığın en kısa izlediği yolu bulup, yansıma ve geliş açıları ile ilgili tezlerini göstermiştir. Bir ışık ışını, aynı ortam içinde A noktasından B noktasına yayılırsa, izlenen yol uzunluğu mümkün olan en kısa uzaklıktır. Yaklaşık 1000 yıl sonra Alhazen ilkeyi hem yansıma hem de kırılma olarak genişletti ve ilke daha sonra bu biçimiyle 1662'de Pierre de Fermat tarafından ispat edildi. Su gücüyle çalışan bir çeşme tasarladığı bilinmektedir. Heron çeşmesi olarak bilinen bu çeşme, (Heron çeşmesi), üst üste duran cam haznelerin birbirleriyle borular yardımıyla bağlanmasıyla oluşan, su ve havanın basıncından yararlanarak ve teoride sonsuza dek devir daim yapan bir fıskıyeyi oluşturan sistem şeklindedir.
Matematik bilimi ile de uğraşmış ve çeşitli çalışmalarda bulunmuştur. Babil ve Mısır geometrilerini Yunan geometri biçimiyle birleştirip, yalnızca uygulamada işe yarayan formülleri kitaplarında kullanmıştır. Matematikte çoğunlukla, bir üçgenin alanını yalnızca kenarlarının uzunluklarını kullanarak hesaplamanın bir yolu olan Heron formülü ile hatırlanır. Matematiksel hacim çalışmaları mevcuttur. Bir sayının karekökünü tekrar edilerek, hesaplanabilmesi için yaklaşık değer veren bir yöntem tanımlamıştır. Kendi adıyla bilinen Heron ortalamasını tanımlamıştır. Buna göre, A ile B sayılarının Heron ortalaması, aritmetik ve geometrik ortalamalarının ağırlıklı ortalamasıdır. A ve B gibi iki negatif olmayan gerçel sayı için, Heron Ort.=1/3 (A+√A.B+B) şeklinde hesaplanır. Bu formül; 2/3 (A+B)/2 +1/3(√A.B) şeklinde de yazılabilir. Heron ortalaması kavramı, bir koni veya piramit kesiğinin hacmini hesaplamakta kullanılabilir. Şeklin hacmi, iki paralel yüzey alanının Heron ortalaması ile, kesik cismin yüksekliğinin çarpımına eşittir.
Heron tarafından yazıldığı bilinen eserler şunlardır:
Pneumatica, (su organı dahil olmak üzere hava, buhar veya su basıncı üzerinde çalışan makinelerin tanımı yapılmaktadır.)
Otomata, (ziyafetlerde ve çeşitli yerlerde kendiliğinden (otomatik olarak) iş yapan makinelerin tanımı).
Mechanica, (sadece Arapça olarak korunan, mimarlar için yazılmış, ağır nesneleri kaldırmak için araçlar içeren bir çalışmadır.)
Metrica, (çeşitli nesnelerin yüzeylerinin ve hacimlerinin nasıl hesaplanacağının açıklamasıdır.)
Dioptra, (uzunlukları ölçmek için bir dizi yöntem ve kilometre sayacı (odometre) anlatıldığı bir çalışmadır)
Belopoeica, (savaş makinelerinin bir açıklaması)
Catoptrica, (ışığın ilerlemesi, yansıma ve aynaların kullanımı hakkındaki bir optik çalışması.)
Heron Alan formülü, kenar uzunlukları bilinen bir üçgenin alanını hesaplamaya yarayan geometri formülüdür. Yunan matematikçi Heron tarafından bulunmuştur. Bütün kenar uzunlukları bilinen bir üçgenin alanıi yarım çevre yardımıyla özel bir hormülle hesaplanabilir. Heron alan formülü, esasında farklı üçgenlerde cosinüs teoreminin uygulanması ile elde edilen bir saleşmiş formüldür. Bütün kenar uzunlukları verilen bir üçgenin alanının hesabında, başka bilgiye ihtiyaç duymadan alanı bulmada kolaylık sağlar.
Bir üçgenin bütün kenar uzunlukları verildiğinde alan formülü Heron bağıntısı ile bulunabilir. Yarıçevre uzunluğu u=(a+b+c)/2 olarak hesaplandıktan sonra yukarıdaki örneklerde de görüldüğü gibi u formülü kullanılarak üçgenin alanı bulunur.
Şimdi bu formülün nasıl ortaya çıktığını aşağıdaki ispat ile verelim. İspat yapılırken temel mantık üçgenin içerisinde bir yükseklik çizilip, buradan pisagor bağıntıları tek tek herbir kenar için yazılarak bu formül ortaya çıkarılır.
Heron alan formülünün ispatını; cosinüs teoremi kullanılarak yaparsak buradan da aynı sonuca ulaşırız. Burada yukarıdakinden farklı olarak ABC üçgeni için herhangi bir açının cosinüs değerini cosinüs teoremi kullanarak yazdığımızda; buna bağlı olarak bu açının sinüs değerini bulabiliriz. Daha sonra üçgenin sinüs bağıntısı ile alan formülünden üçgenin alanı yazılmış olur. Üçgenin yarı çevresi s=(a+b+c)/2 olarak ifade edilirse en altta cosinüs teoremi ile bulunmuş Heron alan formülü bulunmuş olur.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

Aşağıdaki Yazılar İlginizi Çekebilir!!!
04.05.2019 - 0 Yorumİlim, insan için en önemli meseledir. İlim yardımıyla dünya ve ahiretini mamur edebilir. Peygamber Efendimiz (s.a.v) "İlim öğrenmek kadın erkek her müslümana farzdır." (ibn Mace) buyurmuştur. İilim insana fayda veya zarar verebilir. Öğrendiği ilimle…
23.06.2019 - 0 YorumTemel Matematik testi Ortaöğretim kurumlarının son sınıfında okuyan öğrencilerin TYT Matematik Net ortalaması: 6,080 nettir. Bu ortalamaya liseden mezun olmuş olan adaylar da dahil edildiğinde, tüm adayların TYT Matematik Net ortalaması: 5,672 net…
14.04.2019 - 0 YorumBir çember üzerinde yer alan iki farklı noktayı birleştiren doğru parçasına "kiriş" adı verilir. Çember üzerinde alınan dört farklı noktanın kirişler yardımıyla birleştirilmesiyle bir dörtgen meydana gelir. Köşe noktaları bir çember üzerinde buluna…
23.04.2013 - 0 Yorum "Leibniz düşüncesinin en belirgin özelliği çok yanlı oluşudur. Leibniz, düşünce tarihinin yetiştirdiği, insan bilimlerinin bütününü ihata eden, en evrensel düşünürlerden biridir. Leibniz sadece bir filozof olmayıp, aynı zamanda …
23.05.2020 - 0 Yorum Rabbimize zatının, sıfatının, esmasının ve efalinin hudutsuzluğunca hamdolsun. Elhamdülillahi Rabbil alemin. Bizi bir Ramazan-ı Şerif bayramına daha ulaştırdı. Allah-ü Teala tuttuğumuz oruçları, okuduğumuz Kuran-ı Kerim tilavetlerini, kıldığımız…
17.10.2014 - 0 Yorum Matematikte cebirsel olmayan herhangi bir reel sayıya aşkın sayı denir. Diğer bir deyişle, katsayıları tamsayı (ya da rasyonel) olan bir polinomun kökü olamayan reel sayılara aşkın sayı denir. Buradan, tüm aşkın sayıların irrasyonel olduğu sonucuna…
08.04.2013 - 0 Yorum Tarih düşürme, herhangi bir olayın tarihini ebcedin sayı değerleriyle saptama işidir. Harflerinin toplamı belirli bir hicret yılını gösteren sözcük, bir tamlama bulmak; tümce, mısra ya da beyit düzmek yoluyla yapılır. Belirli bir tarihi…
02.08.2023 - 0 YorumYaz sıcağından bir Ağustos gününde, Eskişehir'den Afyon'a doğru yolculuk yaparken, kuru kuruya anayolu takip ederek bir seyahatin sıkıcı olacağı düşüncesinden hareketle iyi bir gezi rotası planladık. Bunun için klasik yolu fazla uzatmadan hemen…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...