Net Fikir » üçgen » Thales Teoremleri ve İspatı
Thales Teoremleri ve İspatı
Etiketler :
benzerlik
geometri
ispat
matematik
matematikçiler
teorem ispatları
thales
üçgen
Thales Teoremi Üçgenlerde benzerlik işlemlerinin temelini oluşturan önemli bir teoremdir. Bu nedenle iyi bilinmesi ve örneklerle pekiştirilmesi gerekmektedir.
Miletli Thalēs; y. MÖ 624/623 – MÖ 548/545), Milet, İyonya'dan bir Antik şehir bugün Aydın sınırları içersinde kalmaktadır. Thales, matematikçi, astronom ve aynı zamanda felsefe ile uşraşmıştır. İlk filozoflardan olduğu için felsefenin öncüsü olarak kabul edilir. adlandırılır. Ticaretle uğraşmış ve bu nedenle Mısır'da bulunmuştur. Bertrand Russell'e göre, Felsefe'nin Thales ile başladığı kabul edilir. Platon, Theaetetus'da, Thales'den "yıldızları incelerken önündeki kuyuyu görmeyen biri" olarak hicvederek bahseder. Aristoteles, Thales'i "zeytinin bol çıkacağı yılları tahmin edebilen başarılı bir kişi" olarak takdim eder.
Thales MÖ 28 Mayıs 585 tarihindeki güneş tutulmasını tahmin etmiştir. Güneş tutulmasını kendisinin bilgisiyle hesaplayıp hesaplamadığı kısmı ihtilaflıdır. Ticaret maksadıyla gittiği, Mısır ve Babil ziyaretleri nedeniyle o bölgelerden bir takım astronomi bilgileri öğrendiği kabul edilmektedir. Thales, suyu hayatın ana kaynağı olarak düşünür ve herşeyin sudan meydana geldiğini, suyun bir ana madde olduğunu söyler. Doğadaki işleyişi ana madde unsuru ile açıklamaya çalışmıştır. Eski Yunan bilginlerinden Kallimakhos'un aktardığı bir düşünceye göre denizcilere kuzey takımyıldızlarından Büyükayı yerine Küçükayı'ya bakarak yön bulmalarını öğütlemiştir. Aynı zamanda Mısırlılardan geometriyi öğrenip Yunanlara tanıtmıştır. Bulduğu bazı geometri teoremleri şunlardır:
Çap çemberi iki eşit parçaya böler.
Bir ikizkenar üçgenin taban açıları birbirine eşittir.
Birbirini kesen iki doğrunun oluşturduğu ters açılar birbirine eşittir.
Köşesi çember üzerinde olan ve çapı gören açı, dik açıdır.
Tabanı ve buna komşu iki açısı verilen üçgen çizilebilir.
Thales Teoremi: “En az üç paralel doğru, iki kesen üzerinde uzunlukları orantılı parçalar ayırır.” Thales teoreminin uygulanması aslında benzerlik bağıntılarının bir özel uygulamasıdır. Thales teoremi ispatlanırken de AAA benzerliğinden yararlanarak ispatlama işlemi yapılır.
Birbirine paralel olan üç veya daha fazla doğru, iki farklı doğruyla kesişirse, kesenler üzerinde ayrılan karşılıklı doğru parçalarının uzunlukları orantılı olur. İkinci thales teoremi de buna benzer biçimde yine benzerlik yardımıyla birbirini kesen iki doğru ve bunları kesen birbirine paralel doğrular yardımıyla oluşan şekilde benzer üçgenlerin kenarları arasındaki orantıdan oluşur. Kesişen iki doğru, paralel iki doğru ile kesildiğinde, oluşan iki üçgenin karşılıklı kenar uzunlukları orantılı olur.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

İlginizi Çekecek Diğer Yazılarımız
Aşağıdaki Yazılar İlginizi Çekebilir!!!
25.03.2013 - 0 Yorum Yüzyıllar boyunca bütün toplumlarda matematik kadınlara göre değildir" önyargısı egemen olmuştur. Kadın matematik alanında eğitimi gerekli görülmemiş ve uygun bulunmamıştır. Kadınlardan okumuş olanların birçoğu da ancak matematiğin dışında iş…
19.11.2008 - 0 YorumAltın oran, örneğin bir dikdörtgenin göze en estetik gözükmesi için uzun kenarı ile kısa kenarı arasındaki orandır. Buna benzer olarak, bir doğru parçasının ikiye ayrıldığında göze en hoş gelen ikiye ayrılma oranıdır. Altın oran, sadece dikdörtgen…
07.05.2014 - 0 Yorum "İnsanın hayatı, tat ile acının güzergâhıdır. İnsan ruhu; acıdan gocunur, tattan hoşlanır. Şimdiki zamandan geleceğe, insan faaliyetlerini düzenleyen şey,…
19.04.2009 - 15 YorumÖteleme nedir?Bir nesnenin bir yerden başka bir yere belirli bir doğrultu ve yönde (sağ, sol, yukarı, aşağı) yaptığı kayma hareketi ötelemedir. Öteleme hareketi sonunda nesnenin geldiği yer, görüntüsüdür. Ötelemede şeklin duruşu, biçimi ve boyutları…
18.04.2013 - 0 Yorum Platon Cisimleri: Bütün kenarları eşit ve yüzeyleri düzgün çokgen olan katı cisimlere Düzgün Katı Cisim denir.Beş Katı cisim olarak bilinen bu geometrik cisimlere, Platonik Cisimler de denir.Şimdiye kadar bilinen düzgün katılar 5…
03.02.2010 - 0 YorumBir Alman matematikçisi olan David Hilbert, 1862 yılında Königsberg'de doğdu. 1895 ile 1929 yılları arasında Göttingen Üniversitesinde profesörlük yaptı. Yirminci yüzyılın başlarında, Alman matematik okulunun önderi sayılır. 1897 yılında cisim…
27.11.2008 - 0 Yorum "Tarih boyunca pek çok matematikçi müzikle ilgilenmiştir. Bazılarımızın aklına 'Acaba pek çok müzisyen de matematikle ilgilenmiş midir?' gibi bir soru takılabilir. Kuşkusuz ilgilenen müzisyenler vardır ancak bir karşılaştırma yapılırsa…
19.04.2013 - 1 YorumHüseyin Tevfik Paşa, (1832-1901) Vidin’de doğmuş, genç yaşta İstanbul’a gelmiş ve Askerî Okul’da okumuştur Burada, matematik derslerindeki yeteneğiyle Cambridge Üniversitesi’nden mezun olmuş olan matematik hocası Tahir Paşa’nın dikkatini çekmiş ve…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...