Net Fikir » matris » Matrislerde çarpma işlemi
Matrislerde çarpma işlemi
Etiketler :
lineer cebir
matematik
matris
Matrislerde çapma işlemi yaparken, ilk matrisin sütun sayısı ile ikinci matrisin satır sayısı birbirine eşit olmalıdır. Çarpılacak iki matrisin sütun ve satır sayılarına dikkat ederek, çarpma işlemi sonucu oluşacak yeni matrisin elemanlarını hesaplamak için satır ve sütun elemanlarını çarparız, ardından sonuç matrisine bu çarpımları toplayarak yeni matrisi oluştururuz. Sonuç matrisinin boyutları, ilk matrisin satır sayısı ve ikinci matrisin sütun sayısı olacaktır.
İki matrisin çarpımı, yeni bir matris oluşturularak yapılır. Yeni matrisin her bir elemanı, ilk matrisin ilgili satırıyla ikinci matrisin ilgili sütununun elemanlarının çarpımının toplamıdır. Örneğin, A matrisi (m x n) boyutlu ve B matrisi (n x p) boyutlu ise, A ile B matrisi arasında çarpma işlemi tanımlanır ve bu çarpım sonucu elde edilen C matrisi (m x p) boyutlu yeni bir matris olacaktır. Son matrisin elemanları, bu oluşan toplam değerlere göre tek tek hesaplanır.
Matris çarpımı, iki matrisin içindeki elemanları uygun şekilde çarparak yeni bir matris oluşturma işlemidir. Örneğin, 2x3 boyutunda bir matris ile 3x2 boyutunda bir matrisi çarptığımızda, sonuç olarak 2x2 boyutunda bir matris elde edilir.
Örneğin 2x3 boyutlu bir matris, A = [1 2 3; 4 5 6] oldun ve çarpımın tanımlı olması için 3x2 boyutlu bir matris B = [2 0; 1 3; 2 1] şeklinde iki farklı matris verilsin. Bu durumda yukarıdaki açıklamaya göre A*B matris çarpımı şu şekilde yapılır: A matrisinin 1. Satırdaki her bir elemanı B matrisinin 1. Sütunundaki aynı konuma gelen elemanlarla tek tek çarpılır ve bu sonuçlar toplanıp aynı konuma yazılır. Bu işlem tüm bileşenleriçin tek tek aynen yapılır. [1*2+2*1+3*2 1*0+2*3+3*1; 4*2+5*1+6*2 4*0+5*3+6*1] = [10 5; 20 18]. Bu çarpım işlemi sonucunda 2x2'lik bir matris elde edilir.
Aşağıda farklı matrisler için çarpım örnekleri verilmiştir, inceleyiniz.
1. Matris çarpımı, kesinlikle boyut uyumu yeterliliği gerektirir. (A
matrisinin sütun sayısı B matrisinin satır sayısına eşit olmalıdır). A matrisi mxn boyutlu bir matris ise B matrisi kesinlikle n satırdan oluşan nxk şeklinde bir matris olmalıdır. Buna göre A.B matrisi (mxn) ve (nxk) boyutlarından çarpım matrisi (mxk) boyutlu bir matris olur.
2.Matris çarpımı genellikle
değiştirilebilir değildir, yani bu matrisler birbirinden farklı ise AB
çarpım matrisi sonucu BA matris çarpımına eşit olmaz.(A.B≠B.A)
3. Matris çarpımı birleşme özelliğini sağlar. Yani üç farklı matrisin çarpım sonucu ayrı ayrı gruplandırılarak bulunabilir. A.(B.C) = (A.B).C şeklinde gruplandırmaya bağlı olarak aynı sonucu verir.
4. Matris çarpımı, toplama işlemi üzerine dağılabilirdir, yani matrislerde toplama işlemi üzerine çarpım işlemi yapıldığında sonuç dağılma yoluyla bulunabilir. (A+B).C = A.C + B.C şeklinde ifade edilebilir.
5. Bir
matrisi bir reel sayı ile çarpma işlemine skalerle çarpım denir.
Skalerle çarpma özelliğinde yani k skaleri ile bir matrisle
çarpıldığında sonuç k.(AB) = (k.A).B'yi verir. Skalerle çarpım işleminde
matrisin bütün elemanları o reel sayı ile tek tek çarpılarak, bulunan
sonuçlar aynı konuma tekrar yazılır.
6. Birim matrisle (etkisiz eleman) çarpma, girdi matrisini değiştirmez (A*I = I*A = A). Birim matrisin kuvveti alınsa dahi yine kendisi oluşur.
7.Matrislerde çarpma işleminde, sıfır matrisi vardır: A*0=0
8. Skalerle çarpım işleminin toplama işlemi üzerine dağılma özelliği vardır. İki farklı skalerle bir matris çarpıldığı zaman skalerin kendi içinde birleşme özelliği vardır.
"0" sıfır skaleri ile çarpım
yapıldığında sıfır matrisi oluşur. 1 skaleri ile çarpıldığında matrisin
kendisi oluşur, yani 1 matrislerde çarpma işlemine göre etkisiz
elemandır.
9. Matris çarpımı genellikle toplama işlemine göre önceliklidir (A*B + C ≠ A*(B + C)).
10. Bir matrisin tersi olan bir matris ile kendisi çarpıldığında birim matrisi verir.
11. Bir matrisin başka bir matrisle çarpımının transpozesi, o matrislerin transpozelerinin çarpımında sıraları yer değiştirir.
Burada verilen özellikler matris çarpımının temel matematiksel özelliklerinden bazılarıdır.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

İlginizi Çekecek Diğer Yazılarımız
Aşağıdaki Yazılar İlginizi Çekebilir!!!
26.01.2025 - 0 Yorum“Bir gece, kendisine bazı âyetlerimizi gösterelim diye kulunu Mescid-i Haram’dan çevresini mübarek kıldığımız Mescid-i Aksâ’ya götüren Allah tüm eksikliklerden münezzehtir. O, gerçekten her şeyi işitmekte ve görmektedir.” (el-İsra-1)سُبْحَانَ…
02.09.2012 - 0 Yorum Ankara Üniversitesi İlahiyat Lisans Tamamlama Programı (İLİTAM) için genel ders programı (2014 yılı itibariyle) şu şekildedir. Sonradan ders isimlerinde ve kredilerinde değişiklik yapılmış olabileceği ihtimali ile en güncel versiyonu…
20.04.2009 - 4 Yorum Eğim, dikey mesafenin yatay mesafeye oranlanması ile bulunur. Eğim, ondalık kesir veya yüzde olarak ifade edilir.Bir doğruda, eğim hesaplanırken doğrunun eksenle yaptığı açının tanjantına bakılır. Tanjant, bir dik üçgende karşı kenar uzunluğunu…
18.05.2012 - 1 Yorum Tam künyesi Sabit b. Kurra b. Mervan b. Sabit b. Kereyan b. İbrahim b. Kereyan b. Marinus b. Salamuyos b. Malagrius el-Harranî, es-Sabiî, Ebu’l-Hasan, el-Feylesof, et-Tabib’dir. Trigonometrinin, Batı'da yaygınlaşmasını sağlayan, aynı zamanda cebiri…
20.06.2014 - 0 Yorum Teğet: Bir çembere veya bir eğriye tek bir noktadan geçecek eşkilde çizilen doğruya denir. Teğet doğrusu ile eğrinin veya çemberin kesim noktası sadece bir tanedir. Teğet doğrusu ile çemberin denklemleri birbirine eşitlenip, ortaya çıkan…
22.04.2009 - 2 Yorum "Algoritma şöyle diyor: Rabbimiz ve koruyucumuz olan Allah ‘a hamd ve senalar olsun" (Harezmi) "Geometri zekayı aydınlatır ve aklı doğru yola sokar. Onun bütün kanıtları açık ve düzenlidir. Çok iyi düzenlendiğinden geometrik mantık yürütmeye…
18.11.2012 - 0 YorumGazi Üniversitesi Matematik Ana bilim dalının duayen hocalarından biri olarak emekli olmuş olan Prof. Dr. Ali Osman ASAR, kendi matematik teoremleri ile dünyaca ünlü bir akademisyendir. Ord. Prof. Dr. Cahit ARF ile de akademik bir geçmişi olan ASAR,…
09.07.2010 - 0 Yorum Eda ile Kazanın Farkları ve Kaza Namazları 281- Bir namazı vaktinde kılmaya "eda" denir. Vaktinden sonra kılmaya da "kaza" denir. Vaktinde kılınan veya kılınacak olan bir namaza "vaktiyye" veya "salât-ı hazıra" denir.…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...