Dörtgende Uzunluk Teoremleri ve İspatı

Etiketler :
Bir dörtgende köşegenler birbirini dik olarak keser ise dörtgenin karşılıklı kenarlarının kareleri toplamı birbirine eşit olur. Bütün konveks dörtgenlerde bu genel özelliktir. Kuralın geçerli olması için köşegenlerin birbirini dik olarak kesmesi gerekir. Konkav dörtgende de aynı bağıntı geçerlidir. İspatı yapılırken dörtgenin iç bölgesinde oluşan üçgenlerde ayrı ayrı pisagor teoreminden yararlanılır.

** Bu şekildeki bir dörtgenin alanı da köşegenleri çarpımının yarısı kadardır. Köşegenler dik kesiştiği için Üçgende sinüs alan formülünden sin 90=1 olduğundan iki parça halinde üçgen toplamı olarak  verilen dörtgen düşünülürse; köşegenleri dik kesişen dörtgenin alanı köşegenler çarpımının yarsı olur.
Yukarıda verilen kenar teoreminin özel bir durumu olarak konveks bir çokgende kenar uzunlukları a,b,c,d ve köşegen uzunlukları e ve f olarak verildiğinde; bu şekil üzerinde köşegenlerin orta noktalarını birleştiren bir doğru parçası çizildiğinde (x) bu doğru parçasının dört katının uzunluğu ile köşegenlerin karelerinin toplamı, dörtgenin kenar uzunluklarının karelerinin toplamına eşit olur. Bu durum teoremin özel halidir. Şekli aşağıda gösterilmiştir. 

**Bir ABCD dörtgenin kenarlarının orta noktaları birleştirildiğinde ortaya çıkan dörtgen KLMN dörtgeni paralelkenardır. Karşılıklı kenar uzunlukları birbirine eşit olan bu KLMN dörtgeninde üçgenlerde benzerlikten yararlanarak orta taban özelliğinden iç bölgede oluşan KLMN dörtgenin çevresi büyük dörtgenin ABCD dörtgenin, köşegenlerinin toplamı kadar olur. 
ABCD dörtgenin köşegenleri uzunlukları birbirine eşit ise iç bölgede oluşan KLMN dörtgeni eşkenar dörtgen olur ki bu dörtgenin bütün kenar uzunlukları birbirine eşit olur. ABCD dörtgenin köşegenleri dik kesişen bir dörtgen ise iç bölgede bu şekilde oluşan KLMN dörtgeni dikdörtgen olur. ABCD dörtgenin köşegenleri hem dik kesişen hem de köşegenleri birbirine eşit uzunlukta ise iç bölgede bu şekilde oluşan KLMN dörtgeni kare olur.

Dörtgenlerde alan özellikleri ile ilgili daha ayrıntılı bilgiyi sitemizde bulabilirsiniz. (Bkz. Dörtgenlerin alan bağıntılarının ispatı)

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Pierre-Simon de Laplace08.01.2010 - 0 YorumPierre-Simon (Marquis de) Laplace (23 Mart 1749 – 5 Mart 1827) "Doğanın tüm olayları birkaç değişmeyen kanunun matematik sonuçlandır" diyen Marquis Pierre-Simon de Laplace, 23 Mart 1749 günü bir köylü çocuğu olarak dünyaya geldi. Ailesi, Fransa'nın…
  • Temel Trigonometrik Denklemlerin Çözümü14.12.2021 - 0 YorumTrigonometrik fonksiyonlarla birlikte verilen denklemlerin çözüm kümelerinin bulunmasında trigonometrik fonksiyonların genel özelliklerinden ve birim çemberden yararlanılır. (Bknz. Trigonometrik Fonksiyonlar) Verilen açı ölçülerinin birim…
  • Yamukta Alan Bağıntıları20.02.2018 - 0 YorumBir yamuğun alanı, alt ve üst taban uzunluklarının toplamının yarısı ile bu tabanlara dik çizilen doğru parçası uzunluğunun (yamuğun yüksekliğinin) çarpımına eşittir. Kısacası yamuğun alan, yamuğun orta tabanı ile yüksekliğinin çarpımına eşittir.
  • 2023 TYT-AYT Matematik Soru Dağılımı30.06.2023 - 0 Yorum2023 TYT 17 HAZİRAN 2023 Cumartesi günü gerçekleştirildi. 2023 TYT; lise müfredatı içerisinden seçilerek hazırlanan, daha çok okuduğunu anlamaya yönelik problem çözme becerisine dayalı soruların yer aldığı ortalama zorlukta bir sınav olmuştur. …
  • Augustin Louis Cauchy03.02.2010 - 0 Yorumİlk büyük Fransız matematikçisi olan Cauchy, 1789’da Paris’te doğdu. 1814 yılında, karmaşık fonksiyonlar kuramını geliştirdi. Bugün, Cauchy teoremi adıyla bilinen ünlü teoremi ifade ederek ispatladı. Bu alanda integraller ve bunların hesaplama…
  • Molla Lütfi ve Matematik19.04.2013 - 0 Yorum(ö.1495) 15. yüzyılda Fatih Sultan Mehmet ve II. Beyazıd dönemlerinde yaşamış meşhur matematikçilerdendir. Sinan Paşa’nın ve Ali Kuşçu’nun talebesi olmuş Ali Kuşçu’dan öğrendiği matematik bilgilerini Sinan Paşa’ya aktarmıştır. Böylece Sinan Paşa…
  • Asal Sayılar ve Bölen Durumları19.01.2015 - 0 Yorum Matematik öğretmeni Mehmet Arslan Hocamızın kendi el yazısı ile oluşturduğu, asal sayı ve bölen sayıları için örnek problemlerin ve özelliklerin oluşturduğu karalamaları sizinle paylaşıyoruz.Güzel el yazısı ve kısa özeti için kendisine…
  • Mescid-i-Aksa Şiiri25.05.2010 - 0 Yorum Mescid-i Aksa’yı gördüm düşümde  Bir çocuk gibiydi ve ağlıyordu  Varıp eşiğine alnını koydum  Sanki bir yer altı nehr çağlıyordu Gözlerim yollarda bekler dururum  Nerde kardeşlerim diyordu bir ses  İlk Kıblesi benim ulu…