Net Fikir » teorem ispatları » Paralelkenar Özellikleri
Paralelkenar Özellikleri
Etiketler :
alan formülleri
dörtgenler
geometri
ispat
matematik
paralelkenar
teorem ispatları
Paralelkenar, karşılıklı kenar uzunlukları birbirine eşit olan ve iç açıları toplamı 360 derece olan bir dörtgendir.
Paralelkenar, yamuk şeklinin özel halidir bu nedenle yamukta yer alan özellikler paralelkenar için de geçerlidir. Ardışık açıların ölçüleri toplamı 180 derecedir. Karşılıklı kenarları, birbirine paralel ve uzunlukları eşittir. Paralelkenarın karşılıklı açıları birbirine eşittir.
Paralelkenarın köşegenleri birbirini ortalar. Ardışık olmayan köşleri birleştiren köşegen uzunlukları birbirine eşit olmak zorunda değildir.
Birbirine komşu iki iç açısını birleştiren açıortay doğru parçalarının arasında kalan açı 90 derecedir. Yani paralelkenarda ardışık iki açıortay, birbirine dik olarak kesişir.
Paralelkenarda herhangi bir kenar uzunluğu ve o kenara ait yüksekliğinin çarpımı, paralelkenarın alanını verir. Paralelkenarın alanı hesaplanırken oluşan iki üçgenin alanları toplamından yararlanılır. Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur.
Paralelkenarda herhangi bir köşegen, paralelkenarı iki eşit alana ayırır. Köşegenlerle dört üçgene ayrılmış bir paralelkenarın, her bir üçgen bölümünün alanı birbirine eşittir. Paralelkenarın bir kenarı üzerinde rastgele bir nokta seçilip, bu noktadan karşı köşelere birer doğru parçası çizilerek üç üçgen meydana getirildiğinde büyük üçgenin alanı kenarlarda meydana gelen diğer üçgenlerin alanları toplamına eşittir. Ayrıca bu büyük üçgenin alanı, paralelkenarın alanının yarısına eşittir.
Paralelkenarın iç bölgesinden herhangi bir nokta alınıp, bu noktadan köşelere doğru parçaları çizilerek üçgenler oluşturulduğunda, oluşan karşılıklı üçgenlerin alanları toplamı birbirine eşit olur. Oluşan bu üçgenlerden karşılıklı olanlarının alanları toplamı, ayrıca paralelkenar alanının yarısına eşittir.
Bir paralelkenarda alan, bütün dörtgenlerde olduğu gibi eğer köşegen uzunlukları verilirse bu köşegenlerin arasındaki açının ölçüsü biliniyorsa sinüs alan formülü ile bulunabilir. Buna göre paralelkenarın alanı, köşegenler çarpımı ile köşegenlerin arasında kalan açının sinüsünün çarpımının yarısı kadar olur. Bu özellik üçgenin sinüs alan bağıntısı ile alan hesabı uygulamasının direkt sonucudur. Paralelkenarda köşegenler birbirini ortaladığından, köşegenler yardımıyla paralelkenarda oluşan dört üçgen için, ayrı ayrı sinüs alan bağıntıları yazılıp, bulunan bütün sonuçlar toplandığında, paralelkenarın alan bağıntısı elde edilir.
Bir paralelkenarın köşelerinden, herhangi bir doğruya çizilen dikme parçalarının uzunlukları karşılıklı toplamları birbirine eşit olur. Bu özellik, esasında yamuktaki orta tabanın, paralelkenar üzerinde gizlenmiş durumudur.
Üçgen benzerliği, paralelkenarda uzunluk hesaplamalarında sıklıkla kullanılan bir konudur. Açıların eşitliği yazıldığı zaman paralellik özelliğinden yararlanarak (veya sonradan ek paralel çizgiler yardımıyla) yeni üçgenler oluşturulup üçgenlerin benzerliğinden çeşitli uzunluklar hesaplanır. Aşağıda benzerlik yardımıyla bulunan bazı kolay sonuçlar verilmiştir.
Benzerlik yardımıyla köşegen üzerinde yer alan parçaların, diğer köşegenle kesilmesi sonucu arasında kalan kenar uzunluklarını hesaplayabiliriz. Aşağıda paralelkenarda benzerlik uygulaması açıklanmıştır.
Paralelkenarda alan uygulamaları için de benzerlik teoremleri sıklıkla kullanılır. (Bkz. Paralelkenarda Alan Hesabı) Alan uygulamalarında, çeşitli tabanlara sahip üçgenler belli oranlarla bölünerek oluşturulan yeni üçgen parçaları yardımıyla, eş yükseklikler kullanılarak paralelkenar parçalanıp bölümlere ayrılabilir.
Kenar uzunlukları a ve b, köşegen uzunlukları da e ve f olan bir paralelkenarda, oluşan ABC üçgeninde veya ADC üçgeninde, köşegenler ve kenarlar arasında kenarortay teoremi uygulandığı zaman yeni bir teorem elde edilir. Bu teoreme göre, paralelkenarda köşegenlerin kareleri toplamı, paralelkenarın kenarlarının kareleri toplamının iki katına eşit olur. (Kenarortay teoremi ile ilgili ayrıntılı bilgiye ulaşmak için bağlantıyı kullanabilirisiniz. https://muallims.blogspot.com/2013/05/kenarortay-teoremi-ispat.html)

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

İlginizi Çekecek Diğer Yazılarımız
Aşağıdaki Yazılar İlginizi Çekebilir!!!
09.06.2012 - 0 Yorum Türk, mizah adamı ve minyatürcüsüdür. Ayrıca matematik ve tarih konularında kitaplar da yazmış çok yönlü bir bilgindir. Doğum tarihi ve yeri bilinmiyor. Kâtip Çelebi ölüm tarihi olarak 1533′ü vermekteyse de, bunun doğru olmadığı bugün…
14.12.2021 - 0 YorumLineer Trigonometrik Denklemler: sin ve cos fonksiyonlarına bağlı olarak verilen birinci dereceden tek değişkenli a, b ve c sıfırdan farklı reel katsayılar olmak üzere aynı dereceden a.sinx+b.cosx=c şeklindeki denklemlere lineer(doğrusal)…
25.08.2012 - 0 Yorum Rızk için bir ferde yoktur minnetim, Kendi sa’yimdir veliyyü’n-ni’metim (Ferid Kam) Celi Ta’lik hattı ile Ahmed Amin Şamta tarafından yazılmıştır.
24.03.2010 - 0 Yorum İtikâfın Mahiyeti, Nevileri ve Teşriî Hikmeti 257- İtikâf lûgat deyiminde bir şeye devam etmek manasındadır. Bir şeye devam eden kimseye de mutekif (itikâf yapan) denir. Şeriatta ise itikâf: Bir mescidde veya o…
20.02.2020 - 0 Yorumİslam sanatının önemli bir parçası olan cami mimarisi ve işçiliği; özellikle tezhib, hat, kubbe, minare şerefeleri ve alemleri ile kendini belli eder. Klasik cami mimarisi içinde dıştan dikkat çeken en önemli yapı; kubbe ve minaredir. Kubbelerin ve…
20.06.2014 - 0 YorumMatematiksel olarak ispatlayabileceğimiz bir göz yanılmasını burada paylaşmak istiyorum. Dikkatlice incelendiğinde bile gözle anlaşılamayacak kadar zekice bir gösteriyi sizinle paylaşıyorum. Bir kalıp çikolatanın şekilde videoda gösterildiği gibi…
28.08.2010 - 0 YorumYolculuğun Sona Erip Ermemesi 273- Asıl vatana dönmekle yolculuk hali sona erer. Orada ikamete niyet edilmesi gerekmez. İkamet vatanı böyle değildir, orada (en az onbeş gün) oturmaya niyet lazımdır. 274- Bir insanın…
13.03.2010 - 0 Yorum Orucun Şartları 39- Orucun farz oluşuna ve yerine getirilmesinin (edasının) farz oluşu ile sıhhatına dair şartlar vardır. Şöyle ki: 1) Oruçla mükellef olmak için İslâm, akıl ve büluğ şarttır. Onun için bu vasıfları toplamayan…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Emekleriniz için çok teşekkürler.
YanıtlaSil👍🏻
YanıtlaSilAllah razı olsun
YanıtlaSil