Dik Üçgen ve temel özellikleri

Bir açısının ölçüsü 90° olan üçgene "dik üçgen" denir. Dik üçgende 90° nin karşısındaki kenara "hipotenüs", diğer kenarlara da "dik kenar" adı verilir. Hipotenüs, dik üçgendeki en uzun kenardır. Hipotenüs kelimesi, Yunancada ‘karşılıklı gerilen’ kelimesinden gelmektedir. Medeniyetlerin etkileşim içinde olduğu Mısırlıların, piramitlerin inşa sürecinde kullandıkları dik üçgenler için ip germe tekniklerinden yararlanmış olmalarından hareketle, 'hipotenüs' isminin de bunlara ithafen verilmiş olabileceği ihtimal dahilindedir. 

Öklid Teoremleri ve ispatı

Öklid Teoremi: Bir dik üçgende hipotenüse ait yüksekliğin karesi, hipotenüs üzerinde ayırdığı parçaların çarpımına eşittir. Bir dik üçgende bir dik kenar uzunluğunun karesi, hipotenüs üzerindeki izdüşümü ile hipotenüs uzunluğunun çarpımına eşittir. (Bkz. Euclidin Hayatı ve Çalışmaları)


Pisagor Teoremi ve sonuçları

Dik üçgende dik kenarların uzunluklarının kareleri toplamı, hipotenüs uzunluğunun karesine eşittir. İşte bu kural pisagor teoremi olarak isimlendirilmiştir. 

Açılarına göre özel dik üçgenler

30°–60°–90° üçgeninde; Hipotenüsün uzunluğu, 30° lik açının karşısındaki kenarın 2 katıdır. 60° lik açının karşısındaki kenarın uzunluğu, 30° lik açının karşısındaki kenarın uzunluğunun √3 katıdır. 

| | | | Devamı... 0 yorum

Kenarlarına göre özel dik üçgenler

Dik üçgenlerde en çok kullanılan ve kenar uzunlukları tam sayı olan belirli üçgenler bilinmektedir. Eğer bu üçgenleri bilirseniz pisagor bağıntısını uygulamadan daha pratik olarak pekçok soruyu çözebilirsiniz. 

3–4–5 üçgeni: Kenar uzunlukları (3,4,5) sayıları veya bunun katları olan üçgenlerdir. 

8–15–17 üçgeni: Kenar uzunlukları (8,15,17) sayıları veya bunun katları olan üçgenlerdir. 

5–12–13 üçgeni: Kenar uzunlukları (5,12,13) sayıları veya bunun katları olan üçgenlerdir. 

7–24–25 üçgeni: Kenar uzunlukları (7,24,25) sayıları veya bunun katları olan üçgenlerdir. 

9-40–41 üçgeni: Kenar uzunlukları (9,40,41) sayıları veya bunun katları olan üçgenlerdir. 

(20-21-29) üçgeni, (12-35-37) üçgeni,..... şeklinde devam ettirilebilir.

Üçgende Alan Bağıntıları

Üçgenin alanı için yüksekliğin bilinmesi gerekebilir. Bir üçgenin herhangi bir köşesinden, karşı kenarına indirilen dikmenin karşı kenarı kestiği nokta ile köşeyi birleştiren doğru parçasına, üçgenin o kenarına ait yüksekliği denir. Üçgenin yükseklikleri, üçgenin çeşidine göre( dar açılı, dik açılı veya geniş açılı) üçgenin iç bölgesinde, üçgenin dış bölgesinde veya ügenin üzerinde kesişebilir. Geniş açılı üçgenlerde yüksekliğin, tabanın uzantısından çizileceğini unutmayınız.

Üçgenler Ünitesi Konu Başlıkları

Üçgenler ünitesinde yer alan aşağıdaki konu başlıkları ile ilgili olarak hazırlanmış konu anlatımı ve önemli teoremlerin ispatlarına, örnek soru çözümlerine ilgili bağlantının/yazının üzerine tıklayarak ulaşabilirsiniz. 










(**) İşaretli olanlar Fen Liseleri, Yeterlilik Sınavları, Olimpiyat/Matematik yarışmaları ve matematik meraklısı her seviye ilim aşığı için hazırlanmış olup, biraz daha ileri matematik konularını ihtiva eden matematik müfredatının daha kapsamlı olduğu alanlar için önceliklidir. 
Konu ile ilgili olarak, ÜÇGENLER (Esen Yay) örnek fasikülünü de ayrıca inceleyebilirsiniz. İNDİRMEK İÇİN TIKLAYINIZ:::

Ders Anlatım Föyleri-Dik Üçgen

Özel Üçgenler-"Dik Üçgen" konusu örnek ders anlatım föyü çeşitli ders kitaplarından yararlanılarak hazırlanmış olup, azami iki ders saati içersinde bitirilecek şekilde uygulanmalıdır.

Öğretmenlere ders anlatımında yararlı olması amacıyla kullanıma sunulmuştur. Başka bir amaç için kullanılamaz.PDF formatında olduğu için akıllı tahtaya uyumludur. PDF okuyucunun olduğu her ortamda tablette, mobil cihazlarda çalışabilmektedir. 
| | | | Devamı... 0 yorum

Aşağıdaki Yazılar İlginizi Çekebilir!!!